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PUBLISHERS' NOTE 

The major part of this volume has been translated from Karl Marx, 
Mathematicheskie Rukopsii, edited by Professor S.A. Yanovskaya, 
Moscow 1968 (referred to in this volume as Yanovskaya, 1968). This 
contained the first publication of Marx's mathematical writings in 
their original form, alongside Russian translation. (Russian trans
lation of parts of these manuscripts had appeared in 1933.) We have 
included the first English translation of Part I of the Russian edition, 
comprising the more or less finished manuscripts left by Marx on the 
differential calculus, and earlier drafts of these. We have not trans
lated Part II of the 1968 volume, which consisted of extracts from and 
comments on the mathematical books which Marx had studied. Pro
fessor Yanovskaya, who had worked on these manuscripts since 1930, 
died just before the book appeared. We include a translation of her 
preface, together with six Appendices, and Notes to Part I. 

In addition, we include the following: 
a) extracts from two letters from Engels to Marx and one from Marx 

to Engels, discussing these writings; 
b) a review of Yanovskaya, 1968, translated from the Russian, by 

the Soviet mathematician E. Kol'man, who died in Sweden in 1979, 
and who had also been associated with these manuscripts since their 
first transcription; 

c) an article by Yanovskaya and Kol'man on 'Hegel and 
Mathematics', which appeared in 1931 in the journa!Podznamenem 
markzisma. This has been translated from the version which appeared 
in the German magazine Unter dem Banner des Marxismus; 

d) an essay on 'Hegel, Marx and the Calculus' written for this 
volume by Cyril Smith. 

The material from Yanovskaya 1968 has been translated by C. 
Aronson and M. Meo, who are also responsible for translating the 
review by E. Kol'man. 

The letters between Marx and Engels, and the article by 
Yanovskaya and Kol'man, are translated by R. A. Archer 

v 
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S.A. Yanovskaya 

PREFACE TO THE 
1968 RUSSIAN EDITION 

Engels, in his introduction to the second edition of Anti-Diihring, 
revealed that among the manuscripts which he inherited from Marx 
were some of mathematical content, to which Engels attached great 
importance and intended to publish later. Photocopies of these man
uscripts (nearly 1,000 sheets) are kept in the archives of the Marx
Lenin Institute of the Central Committee of the Communist Party of 
the Soviet Union. In 1933, fifty years after the death of Marx, parts of 
these manuscripts, including Marx's reflections on the essentials of 
the differential calculus, which he had summarised for Engels in 1881 
in two manuscripts accompanied by preparatory material, were pub
lished in Russian translation, the first in the journal Under the Banner 

I of Marxism (1933, no.!, pp.IS-73) and the second in the collection 
Marxism ana Saence (1933, pp.S-61). However, even these parts of 

\)/ the mathematical manuscripts have not been published in the original 
languages until now. 

In the present edition all of the mathematical manuscripts of Marx 
having a more or less finished character or containing his own obser
vations on the concepts of the calculus or other mathematical ques
tions, are published in full. 

Marx's mathematical manuscripts are of several varieties; some of 
them represent his own work in the differential calculus, its nature 
and history, while others contain outlines and annotations of books 
which Marx used. This volume is divided, accordingly, into two 
parts. Marx's original works appear in the first part, while in the 
second are found full expository outlines and passages of 
mathematical content.* Both Marx's own writings and his obser
vations located in the surveys are published in the original language 
and in Russian translation. 

* This volum(" contains a translation o( the firs! part only. 

VII 
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Although Marx's own work, naturally, is separated from the out
lines and long passages quoting the works of others, a full under
standing of Marx's thought requires frequent acquaintance with his 
surveys of the literature. Only from the entire book, therefore, can a 
true presentation of the contents of Marx's mathematical writings be 
made complete. 

Marx developed his interest in mathematics in connection with his 
work on Capital. In his letter to Engels dated January 11, 1858, Marx 
writes: 

'I am so damnedly held up by mistakes in calculation in the 
working out of the economic principles that out of despair I intend 
to master l!!gebra promptly. Arithmetic remains foreign to me. But 
I am again shooting my way rapidly along the algebraic route.' 
(K.Marx to F.Engels, Works, Vol.29, Berlin, 1963, p.256.) 

Traces of Marx's first studies in mathematics are scattered in 
passages in his first notebooks on political economy. Some algebraic 
expositions had already appeared in notebooks, principally those 
dated 1846. It does not follow, however, that they could not have been 
done oii""i<;;;se notebook sheets at a much later time. Some sketches of 
elementary geometry and several algebraic expositions on series and 
logarithms can be found in notebooks containing preparatory material 
for Critique of Political Economy dating from April-June 1858. 

In this period, however, the mathematical ideas of Marx proceeded 
only by fits and starts, mostly when he was not occupied with any
thing else. Thus on November 23, 1860 Marx wrote to Engels: 'For 
me to write is almost "out of the question". Mathematics is the single 
subject for which I still have the necessary "quietness of mind".' 
(Marx-Engels, Works, Vol.30, Berlin, 1964, p.ll3) In spite of this he 
invariably went on with his mathematical ideas, and already on July 6 
1863 he wrote to Engels: 

'In my free time I do differential and integral calculus. A propos! 
I have a surplus of books and will send one to you if you want to 
study this topic. I deem it almost indispensable for your military 
studies. By the way, it is a much easier part of mathematics 
(involving mere technique) than the higher parts of algebra, for 
instance. Outside of knowledge of the usual algebra and 
trigonometry there is nothing else necessary to study, except for ~~ •Z 
general familiarity with the conic sections.' (Ibid., p.362) , 

I 
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.PREFACE IX 

Also, in the appendix to an unpreserved letter from the end of 1865 
or beginning of 1866 Marx explained to Engels the essentials of the 
differential calculus in an example of the problem of the tangent to the 
parabola. 

However, he was still concerned frrst of all with the basics of 
mathematics in their connection with political economy. Thus in 
1869, in relation to his smdies of questions of the circulation of capital 
and the role of promissory notes in inter-governmental calculations, 
Marx familiarised himself with the long course of commercial 
arithmetic, Feller and Odermann, which he outlined in detail (cf. 
mss.2388 and 2400). It was characteristic of Marx's survey techniques 
that, coming across some question of which he did not already feel 
himself in command, Marx was not content until he had mastered it 
completely, down to its foundations. Every time Feller and Oder
mann used some mathematical technique, Marx considered it neces
sary to re-commit it to memory, even if it was known to him. In his 
surveys of commercial arithmetic- these and also much later ones, 
cf. mss.3881, 3888, 3981 -are found insertions, moreover, of purely 
mathematical content in which Marx advanced even further into 
fields of higher mathematics. 

In the 1870s, starting in 1878.._ Marx's thoughts on mathematics 
acqurred a more systematic chari?cter. Concerning this period Engels 
in the introduction to the second edition of Capital: 

'Mter 1870 came another pause caused mainly by the painful 
illnesses of Marx. By habit, he usually filled his time studying; 
agronomy, American and especially Russian land relationships, 
monetary markets and banks, and fmally natural science: geology 
and physiology, and particularly his own mathematical work, all go 
to make up the contents of numerous notebooks from this period.' 
(Marx-Engels, Works, Vo1.24, Berlin 1963, p.ll) 

J At the same time the problems of applying mathematics to political 
economy continued to interest Marx. Thus in a letter to Engels of May 
31, 1873 Marx wrote: 

'I have just sent Moore a history which privatim had to be 
smuggled in. But he thinks that the question is unsolvable or at 
least pro tempore unsolvable in view of the many parts in which facts 
are still to be discovered relating to this question. The matter is as 
follows: you know tables in which prices, calculated by percent 
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etc., etc. are represented in their growth in the course of a year etc. 
showing the increases and decreases by zig-zag lines. I have 
repeatedly attempted, for the analysis of crises, to compute these 
"ups and downs" as fictional curves, and I thought (and even now I 
still think this possible with sufficient empirical material) to infer 
mathematically from this an important law of crises. Moore, as I 
already said, considers the problem rather impractical, and I have 
decided for the time being to give it up.' (Marx-Engels, Works, 

Vol.33, Berlin, 1966, p.82). 

Thus it is clear that Marx was consciously leading up to the pos
sibility of applying mathematics to political economy. Given the full 
texts of all.Marx's mathematical manuscripts in the second part of our 
book, it still does not fully answer the question of what impelled Marx 
to proceed to the differential calculus from the study of algebra and 
commercial arithmetic. Indeed the mathematical manuscripts of 
Marx begin precisely in this period when Marx was concerned with 
elementary mathematics only in connection with problems arising 
from his study of differential calculus. His studies of trigonometry 
and the conic sections are found exactly in this context, which he 
suggested to Engels to be indispensable. 

In differential calculus, however, there were difficulties, especially 
in its fundamentals- the methodological basis on which it was built. 
Much light was thrown on this condition in Engels's Anti-Diihring. 

'With the introduction of variable magnitudes and the extension 
of their variability to the infinitely small and infinitely large, 
mathematics, in other respects so strictly moral, fell from grace; it 
ate of the tree of knowledge, which opened up to it a career of most 
colossal achievements, but at the same time a path of error. The 
virgin state of absolute validity and irrefutable certainty of every
thing mathematical was gone forever; mathematics entered the 
realm of controversy, and we have reached the point where most 
people differentiate and integrate not only because they under
stand what they are doing but from pure faith, because up to now it 
has always come out right.' (Anti-Diihring, p.l07) 

Naturally Marx was not reconciled to this. To use his own words, 
we may say that 'here, as everywhere' it was important for him 'to tear 
off the veil of mystery in science'. (see p.l09) This was of the more 
importance~ since the procedure of going from elementary 
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mathematics i:o the mathematics of a variable quantity must be of an 
essentially dialectical character, and Marx and Engels considered 
themselves obliged to show how to reconcile the materialist dialectic 
not only with the social sciences, but also with the natural sciences and 
mathematics. The examination by dialectical means of mathematics 
of variable quantities may be accomplished only by fully investigating 
that which constitutes 'a veil surrounded already in our time by 
quantities, which are used for calculating the infinitely small- the 
differentials and infinitely small quantities of various orders'. 
(Marx-Engels, W orf<s, Vol.20, Berlin, 1962, p.30) Marx placed before 
himself exactly this problem, the elucidation of the dialectic of sym
bolic calculation, operating on values of the differential. 

Marx thonght about mathematics independently. The only person 
to whom he turned was his friend Samuel Moore, whose under
standing of mathematics was at times rather limited. Moore could not 
render any essential help to Marx. Moreover, as can be observed in 
remarks that Moore made concerning the 1881 manuscripts (which 
Marx sent Engels) containing Marx's expository ideas on the deri
vation and meaning of the symbolic differential calculus, Moore 
simply did not understand these ideas. (cf. Marx's letter to Engels, 
this volume p .xxx) 

Marx studied textbooks of differential calculus. He oriented him
self with books used at courses in Cambridge U Diversity, where in the 
17th century Newton held a chair of higher mathematics, the 
traditions of which were kept by the English up to Marx's day. 
Indeed, there was a sharp struggle in the 20s and 30s of the last 
century between young English scholars, grouped about the 'Analy-

'}( tical Society' of mathematicians, and the opposing established and 
b obsolete traditions, converted into untouchable 'clerical' dogma, rep-

/

. resented by Newton. The latter applied the synthenc methOds of his 
.· Q Pnnctpuz With the stipulation that each problem had to be solved from 

the beginning without converting it into a more general problem 
which could then be solved with the apparatus of calculus. 

In this regard, the facts are sufficiently clear that Marx began 
studying differential calculus with the work of the French abbot 

'( 

Sauri, Cours comp/et de mathematiques (I 778), based on the methods of ft 
Leibnitz;md written in his notatipn, and that he turned next to the De 11 

atu~lyse per aequationes numero terminorum infinitas of. Newton 
(cf.ms.2763). Marx was so taken with Sauri's use of the Leibnitzian 
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algorithmic methods of differentiation that he sent an explanation of it 
(with application to the problem of the tangent to the parabola) in a 
special appendix to one of his letters to Engels. 

Marx,however,didnotlimithimselftoSauri'sCours. The next text 
to which he turned was the English translation of a modern (1827) 
French textbook, J .-L. Boucharlat's Eliments de cakul differentiel et du 
calcul integral. Written in an eclectic spirit, it combined the ideas of 
d' Alembert and Lagrange. It went through eight editions in France 
alone and was translated into foreign languages (including Russian); 
the textbook, however, did not satisfy Marx, and he next turned to a 
series of monographs and survey-course books. Besides the classic 
works of Euler and MacLaurin (who popularised Newton) there were 
the university textbooks of Lacroix, Hind, Hemming and others. 
Marx made scattered outlines and notations from all these books. 

In these volumes Marx was interested primarily in the viewpoint of ( 
Lagrange, who attempted to cope with the characteristic difficulties ) 
of differential calculus and ways of converting calculus into an 'algeb
raic' form, i.e., without starting from the extremely vague Newtonian 
concepts of'infmitely small' and 'limit'. A detailed acquaintance with 
the ideas of Lagrange convinced Marx, however, that these methods 
of solving the difficulties connected with the symbolic apparatus of 
differential calculus were insufficient. Marx then began to work out · 
his own methods of explaining the nature of the calculus. 

Possibly the arrangement of Marx's mathematical writings as is 
done in the second half of the volume permits a clarification of the way 
in which Marx came onto these methods. We see, for example, 
beginning with the attempt to correct Lagrange's outlook how Marx 
again turned to algebra with a complete understanding of the algeb
raic roots of the differential calculus. Naturally, his primary interest 
here was in the theorem of the multiple roots of an algebraic equation, 
the finding of which was closely connected with the successive dif
ferentiations of equations. This question was especially treated by 
Marx in the series of manuscripts 3932, 3933, appearing here under 
the titles 'Algebra I' and 'Algebra II'. Marx paid special attention to 
the important theorems of Taylor and MacLaurin. Thus arrived his 
manuscripts 3933, 4000, and 4001, which are impossible to regard 
simply as outlines and the texts of which are, therefore, given in full. 

Generally speaking in the outlines Marx began more and more to 
use his own notation. In a number of places he used special notation 

·' _'; 
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for the conc~pt of function and in places dy for !! - These symbols 
dx 0 

are met passim a number of other manuscripts (cf. 2763, 3888, 3932, 
4302). 

Convinced that the 'pure algebraic' method of Lagrange did not 
solve the difficulties of the foundations of the differential calculus and 
already having his own ideas on the nature and methods of the 
calculus, Marx once again began to collect textual material on the 
various ways of differentiating (cf. mss. 4038 and 4040). Only after 
reading the expositions suggesting (for certain classes of functions) 
the methods of 'algebraically' differentiating, only after constructing 
sketches of the basic ideas did he express his point of view. These are 
exhibited here in the manuscripts and variants published in the first 
part of this volume. We now proceed to the contents of these man· 
uscripts. 

1;-" In the 1870s, from which date the overwhelming majority of Marx's 
mathematical works, contemporary classical analysis and charac
teristic theories of the real numbers and limits were established on the 
European continent (principally in the works of Weierstrass, Dede
kind and Cantor). 

This more precise work was unknown in the English universities at 
that time. Not without reason did the well-known English 
mathematician Hardy comment in his Course of Pure Mathematics, 
written significantly later (1917): 'It [this book] was written when 
analysis was neglected in Cambridge, and with an emphasis and 
enthusiasm which seem rather ridiculous now. If I were to rewrite it 
now I should not write (to use Prof. Littlewood's simile} like a 
"missionary talking to cannibals",' (preface to the 1937 edition). 
Hardy had to note as a special achievement the fact that in monog· 
raphs in analysis 'even in England there is now [i.e., in 1937] no lack'. 

It is not surprising therefore that Marx in his mathematical man-I 
~scripts may have been cut offfrom the more contemporary p.roblems 

_ m mathematical analysis which were created at that time on the 
I Continent. Nonetheless his ideas on the nature of symbolic dif-
t ferential calculus afford interest even now. 

Differential calculu;:,. is characterised by its symbols and ~r-
mmology, such notions as 'differential' and 'infinitely small' of dif-

f ferent orders, such symbols as dx, dy, d2y, d3y ... ddy, dd~, dd'{ 
~ X X X L""' ""'=· b "''";"ill'""''"'"~'~' mmo "'"'' »="""" 
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books used by Marx associated these concepts and symbols with 
special methods of constructing quantities different from the usual 
mathematical numbers and functions. Indeed, mathematical analysis 
was obliged to operate with these special quantities. This is not true at 
the present time: there are no special symbols in contemporary analy
sis; yet the symbols and terminology have been preserved, and even 
appear to be quite suitable. How? How can this happen, if the 
corresponding concepts have no meaning? The mathematical man
uscripts of Karl Marx provide the best answer to this question. 
Indeed, such an answer which permits the understanding of the 
essence of all symbolic calculus, whose general theory was only 
recently constructed in contemporary mathematical logic. 

The heart of the matter is the operational role of symbols in the 
calcnlus:For example, if one particular method of calculation is to be 
employed repeatedly for the solution of a range of problems then the 
special symbol appropriately chosen for this method briefly desig
nates its generation, or as Marx calls it, its 'strategy of action'. That 
symbol, which comes to stand for the process itself, as distinct from 
the symbolic designation introduced for the process, Marx called 
'real'. 
~y then introduce an appropriately chosen new symbol for this? 
Mm's answer consists in thllt this gives us the opportunity not to 
execute the entire process anew each · but rather usin the fact of 
prev1ous y vmg executed it in several cases, to reduce the procedure 
in more complicated cases to the procedure of the more simple ones. 
For this n IS orily necessary, once file regUlllriues of the particular 
method are well-known, to represent several general rules of oper
ation with new symbols selected to accomplish this reduction. And 
with this step we obtain a calculus, operating with the new symbols, 
on its, as Marx called it, 'own ground'. And Marx thoroughly 
clarifies, by means of the dialectic of the 'inverted method', this 
transition to the symbolic calculus. The rules of calculus allow us on 
the other 'hand not to cross over from the 'real' process to the symbolic 
one but to look for the 'real' process corresponding to the symbol, to 
make of the symbol an operator~ the above-mentioned 'strategy of 

action'. 
Marx did all this in his two fundamental works written in 1881 and 

sent to Engels: 'On the concept of the derived function' (see p.3) and 
'On the differential' (p.l5). In the frrst work Marx considers the 'real' 
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method, for several types of functions, to find the derived functions and 
differentials, and introduces appropriate symbols for this method (he 
calls it 'algebraic' differentiation). In the second work he obtains the 
'inverted method' and transfers to the 'own ground' of differential 
calculus, employing for this aim first of all the theorem on the derivative 
of a product which permits the derivative of a product to be expressed as 
the sum of the derivatives of its factors. Employing his own words, 
'thus the symbolic differential coefficient becomes the tlUlOn01tiOUS star
ting point whose real equivalent is frrst to be found . . . Thereby, 
however, the differential calculus appears as a specific type of calculus 
which already operates independently on its own ground (Boden). 

For its starting points ~ , : , belong only to it and are 

mathematical quantities characteristic of it.' (pp.20-2I). For this they 
'are suddenly transformed into operational symbols (Operationssy
mbole), into symbols of the process which must be carried out ... .10 
fmd their "derivatives". Originally having arisen as the symbolic 
expression of the "derivative" and thus already finished, the symbolic 
differential coefficient now plays the role of the symbol of that oper
ation of differentiation which is yet to be completed.' (pp.20-2l). 

In the teachings of Marx there were not yet the rigorous definitions 
of the fundamental concepts of mathematical analysis characteristic of 
contemporary mathematics. At frrst glance the contents of his man
uscripts appear therefore to be archaic, not up to the requirements, 
say, of Lagrange, at the end of the 18th century. In actuality, the 
fundamental principle characteristic of the manuscripts of Marx has 
essential significance even in the present day. Marx was not acquain
ted with contemporary rigorous definitional concepts of real number, 
limit and continuity. But he obviously would not have been satisfied 
with the definitions, even if he had known them. The fact is Marx uses 
the 'real' method of the search for the derivative function. that is the 
aigorttliiri, rrrst, to answer the question whether there exists a deriva
_nve for a given function, and second, to find it, ifit exists. As is 
well known, the concept of limit is not an algorithmic concept, and 
therefore such problems are only solvable for certain classes of 
functions. One class of functions, the class of algebraic functions, that 
is' functions composed of variables raised to any power, is represented 
by Marx as the object of 'algebraic' differentiation. In fact, Marx only 
deals with this sort of function. Nowadays the class of functions for 
which it is possible to answer both questions posed above has been 



\} 

XVI MATHEMATICAL MANUSCRIPTS 

significantly broadened, and operations may be performed on all 
those which satisfy the contemporary standards of rigour and pre
cision. From the Marxian point of view, then, it is essential that 

1

. 
transformations of limits were regarded in the light of their effective 
operation, or in other words, that mathematical analysis has been 
built on the basis of the theory of algorithms, which we have described 
here. 

We are certainly well acquainted with Engels's statement in the 
Dialectics of Nature that 'the turning point in mathematics was Descar
tes' introduction of flllriab/e quanl!ties. Thanks to this fiiOf)emenf came 
into mathematics and with it ihe dialectic and thanks to this rapitlly 
became necessary differeruitll and integral calculus, which arose simul
taneously and which generally and on the whole were completed and 
not invented by Newton and Leibnitz' (Dialectics of Na!Ure p.258). 

But what is this 'variable quantitY'? What is a 'variable' in 
mathematics in general? The eminent English philosopher Bertrand ~ 
Russell says on this point, 'This, naturally , is one of the most 
difficult concepts to understand,' and the mathematician Karl Men- . 
ger counts up to six completely different meanings of this concept. To ( 
cluctdAte the concept of variables -in other words, of functions -
and that of variables in mathematics in general, the mathematical 
manuscripts of Marx now represent objects of essential importance. 
Marx directly posed to himself the question of the viui.ous meanings of 
the concepts of function: the functions 'of x' and functions 'in x' -
and he especially dwelt on how to represent the mathematical oper
ation of change of variables, in what consists this change. On this 
question of the means of representation of the change of variables 
Marx placed special emphasis, so much so that one talks charac
teristically of the 'algebraic' method of differentiation, which he 
introduced. 

The fact is, Marx strenuously objected to the representation of any 
change in the value of the variable as the increase (or decrease) of 
previously prepared values of the increment (its absolute value). It 
seems a sufficient idealisation of the real change of the value of some 
quantitY or other, to make the assertion that we can precisely ascertain 
aU the values which this quantitY reCeives in the course of the change. 
Since in actualitY all such values can be found only approximately, 
those assumptions on which the differential calcnlus is based must be 
such that one does not need information about the entiretY of values of 
any such variable for the complete expression of the derivative func-
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tionftx) from the given f(x), but that it be sufficient to have the 
expression f(x). For this it is only required to know that the value of 
the variable x changes actually in such a way that in a selected (no 
matter how small) neighbourhood of each value of the variable x 
(within the given range of its value) there exists a value x., different 
from x, but no more dum that. 'x1 therefore remains just exactly as 
indefinite as x is.' (p.88) 

It stands to reason from this, that when x is changed into x 1, 

thereby generating the difference x 1 - x, designa~ed as 6%, then the 
resulting x 1 becomes equal to x + 6%. Marx emphasised at this point 
that this occurs only as a result of the change of the value x into the 
value x 1 and does not precede this change, and that to represent this 
x 1 as known as the fixed expression x + 6% carries with it a distorted 
assumption about the representation of movement (and of all sorts of 
change in general). Distorted because in this case here, 'although in 
x + 6%, 6% is equally as indeterminate in quantitY as the unde
termined variable x itself; 6% is determined separately from x, a 
distinct quantitY, like the fruit of the mother's womb, with which she 
is pregnant.' (p.87) 

In connection with this Marx now begins his determination of the 
derived function f(x) from the function f(x) with the change of x 
into x 1 • As a resultofthis/(x) ischangedintof(xJ, and there arise 
both differences x.- x and f(xJ- f(x), the first of which is 
obviously different from zero as long as x 1 'F x. 

'Here the increased x, is distinguished as x 1 ,from itself, before it 
grows, namely from x, but x 1 does not appear as an x increased by 
6%, sox 1 therefore remains just exactly as indefinite as x is.' (p.88) 

The real mystery of differential calcnlus, according to Marx, con
sists in that in order to evaluate the derived function at the point x (at 
which the derivative exists) it is not only necessary to go into the 
neighbourhood of the point, to the point x 1 different from x, and to 
form theratioofthedifferencesf(xJ- f(x) and x.- x that is, the 

expression f(x,)- f(x), but also to return again to the point x; and 
X, X 

to return not without a detour, with special features relating to the 
concrete evaluation of the function f( x) , since sintply setting x 1 = x 

in the expression f(x,)- f(x) turns it into f(x)- f(x) that is 
Xt X X X ' ' ' 

into %, or in other words into meaninglessness. 
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This character of the evaluation of the derivative, in which is 
formed the non-zero difference x 1- x and the subsequent-after the 

construction of the ratio !C•J- f(x) -dialectical 'removal' of this 
X1- X_ 

difference, is still preserved in the present-day evaluation of the 
derivative, where the removal of the difference x 1- x takes place 
with the help of the limit transition from x 1 to x. 

In his work 'Appendix to the manuscript "On the history of the 
differential calculus", Analysis of the Method of d' Alembert' Marx 
also spoke of the 'derivative' essentially as the limit of the value of the 

ratio !C•J- f(x), although he denoted it with other terms. In fact 
>t X 

the confusion surrounding the terms 'limit' and 'limit value', con
cerning which Marx observed, 'the concept of value at the limit is 
easily misunderstood and is constantly misunderstood', prompted 
him to replace the term 'limit' with 'the absolute minimal expression' 
in the determination of the derivative. But he did not insist on this 
replacement, however, foreseeing that the more precise definition of 
the concept of limit, with which he familiarised himself in Lacroix's 
long Traiti du calcul differentiel et du calcul integral - a text which 
satisfied Marx significantly more than others - could result further 
on in the introduction of unnecessary new terms. In fact Marx wrote 
of the concept of limit, 'this category which Lacroix in particular 
analytically broadened, only becomes important as a substitute for the 
category "minimal expression': ' (see p.68). 

Thus Marx clarified the essentials of the dialectic connected with 
the evaluation of the derivative even in contemporary mathematical 
analysis. This dialectic, not a formal contradiction, makes, as will be 
shown below, the differential calculus ofN ewton and Leibnitz appear 
'mystical'. To see this it is only necessary to recall that Marx by no 
means totally denied the representation of a101 change in the value of 
the variable as the addition of some 'increment' already having a 
value. On the contrary, when one speaks of the evaluation of the result 
of the already introduced change, one is induced to speak equally of 
the increase of the value of the variable (for example, of the depen
dence of the increase of the function on the increase in the inde
pendent variable), and 'the point of view of the sum' x 1 = x + 6.x or x 1 

= x + h, as Marx calls it, becomes fully justified. To this transition 
from the 'algebraic' method to the 'differential' one Marx specially 
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devoted hlDtself in his last. work 'Taylor's Theorem', which uofor
tunately remains unfinished and is therefore only partially repro
duced in the f1rst part of the present book. (A very detailed descrip
tion of this manuscript of Marx, with almost all of the text, appears in 
the second part of the book, [Yanovskaya, 1968 pp.498-562] ). 

Here Marx emphasises that, while in the 'algebraic' method x 1- x 
consists solely for us as the form of a difference, and not as some 
x 1 - x = h and therefore not as the sum x 1 = x + h , in the transition 
to the 'differential' method we may view h 'as an increment (positive 
or negative) of x. This we have a right to do, since x 1 - x = 6.x and 
this same 6.x can serve, after our way, as simply the symbol or sign of 
the differences of the x's, that is of x 1 - x, and also equally well as the 
quantity of the difference x ,- x, as indeterminate as x 1- x and 
changed with their changing. 

'Thus x ,- x = 6.x or = the indeterminate quantity h. From this it 
follows that x 1 = x + h and.t\x 1) or y 1 is transformedintof(x + h).' 
(Yanovskaya, 1968 p.522) 

In this way it would be uofair to represent the viewpoint of Marx as 
requiring the rejection of all other methods employed in differential 
calculus. If these methods are successful Marx sets himself the task of 
clarifying the secret of their success. And after this is shown to him, 
that is, after the examined method has demonstrated its validity and 
the conditions for its use are fulfilled, Marx considers a transition to 
this method not ouly fully justified but even appropriate. 

Following his 1881 manuscript containing the fundamental results 
of his thoughts on the essence of differential calculus, Marx chose to 
send Engels a third work, concerned with the history of the method of 
differential calculus. At first, he wanted to depict this history with 
concrete examples of the various methods of showing the theorems on 
the derivation of the derivative, but then he relinquished this resolve 
and passed on to the general characteristics of the fundamental periods 
in the history of the methods of differential calculus. 

This third work was not fully put into shape by Marx. There remain 
only the indications that he had decided to write about it and sketches 
of the manuscript, from which we know how Marx constructed and 
l)ndertook the plan of his historical essay on this theme. This rough 
copy is published in full in the first part of this book (see pp. 73-106). 
AU of Marx's indications that there should be introduced into the text 
this or that page from other manuscripts are here followed in full. The 
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manuscript gives us the possibility to explicate Marx's viewpoint on 
the history of the fundamental methods of differential calculus. 

I) the 'mystical differential calculus' of Newton and Leibnitz, 
2) the 'rational differential calculus' of Euler and d' Alembert, 
3) the 'pure algebraic calculus' of Lagrange. 

The characteristic features of the methods of Newton and Leibnitz 
revealed, according to Marx, the fact that their creators did not see the 
'algebraic' kernel of differential calculus: they began immediately 
with their operational formulae, the origins and the meaning of 
which remained therefore misunderstood and even mysterious, so 
that the calculus stood out as 'a characteristic manner of calculation 
different from the usual algebra' (p.84), as a discovery, a completely 
special discipline of mathematics as 'different from the usual algebra 
as Heaven is wide' (p.113). 

To the question, 'By what means ... was the starting point chosen 
for the differential symbols as operational formulae' Marx answers, 
'either through covertly or through overtly metaphysical 
assumptions, which themselves lead once more to metaphysical, 
unmathematical consequences, and so it is at that point that the 
violent suppression is made certain, the derivation is made to start its 
way,andindeedquantitiesmade to proceed from themselves.' (p.64) 

Elsewhere Marx writes concerning the methods of Newton and 
Leibnitz: 'x 1 = x + 6:.: from the beginning changes into x 1 = x + dx 
... where dx is assumed by a metaphysical explanation. First, it 
exists, then it is explained.' 'From the arbitrary assumption the 
consequence follows that ... terms ... must be juggkd away, in 
order to obtain the correct result.' (p. 91) 

In other words, so long as the meaning of introduction into 
mathematics of the differential symbols remains unexplained- more 
than that, generally false, since the differentials dx, dy are identified 
simply with the increments 6:.:, .6.y - then the means of their 
removal appear unjustified, obtained by a 'forcible', 'juggling' sup· 
pression. We have to devise certain metaphysical, actually infinitely 
small quantities, which are to be treated simultaneously both as the 
usual different-from-zero (nowadays called 'Archimedean') quantities 
and as quantities which 'vanish' (transmute into zero) in comparison 
with the finite or infinitely small quantities of a lower order (that is, as 
'non-Archimedean' quantities); or, simply put, as both zero and non~ 
zero at the same time. 'Therefore nothing more remains,' writes Marx 
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in this connection, 'than to imagine the increments h of the variable to 
be infinitely small increments and to give them as such independent 
existence, in the symbols i, y etc. or dx, dy [etc] for example. But 
infinitely small quantities are quantities, just like those which are 
infinitely large (the word infinitely [small] only means in fact inde
finitely small); the dy, dx ... therefore also take part in the cal
culation just like ordinary algebraic quantities, and in the equation 
(y + k)- y or k = 2xdx + dxdx the dxdx has the same right to 
existence as 2xdx does.' .. 'the reasoning is therefore most peculiar 
by which it is forcibly suppressed'. (p .83) 

The presence of these actually infinitely small, that is, formally 
contradictory, items which are not introduced by means of operations 
of mathematically grounded consistency but are hypothesised on the 
basis of metaphysical 'explanations' and are removed by means of 
'tricks' gives the calculus ofN ewton and Leibnitz, according to Marx, 
a 'mystical' quality, despite the many advantages they bring to it, 
thanks to which it begins immediately with operating formulae. 

At the same time Marx rated very highly the historical significance 
of the methods of Newton and Leibnitz. 'Therefore,' he writes, 
'mathematicians really believed in the mysterious character of the 
newly-discovered means of calculation which led to the correct (and, 
particularly in the geometric application, surprising) result by means 
of a positively false mathematical procedure. In this manner they 
became themselves mystified, rated the new discovery all the more 
highly, enraged all the more greatly the crowd of old orthodox 
mathematicians, and elicited the shrieks of hostility which echoed 
even in the world of non-specialists and which were necessary for the 
blazing of this new path.' (p. 94) 

The next stage in the development of the methods of differential 
calculus, according to Marx, was the 'rational differential calculus' of 
d' Alembert and Euler. The mathematically incorrect methods of 
Newton and Leibnitz are here corrected, but the starting point 
remains the same. 'D' Alembert starts directly from the point de depart 
ofNewtonand Leibnitz, x 1 = x + dx. But he immediately makes the 
fundamental correction: x 1 = x + .6.x, that is x and an undefined, 
but prima facie finite increment* which he calls h. The transformation 
of this h or 6:.: into dx ... is the final result of the development, or 

* By 'finite increment' the literature which Marx consulted understood a rum-zero 
finite increment- S.A. Yanovskaya 
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at the least just before the gate swings shut, while in the mystics and 
the initistors of the calculus as its starting point.' (p.94) And Marx 
emphasised that with this the removal of the differential symbols from 
the final result proceeds then 'by means of correct mathematical 
operation. They are thus now discarded without sleight of hand.' 
(p.96) 

Marx therefore rated highly the historical significance of d' Alem· 
bert's method. 'D' Alembert stripped the mystical veil from the dif
ferential calculus, and took an enormous step forward,' he writes 
(p.97). 

However, so long as d' Alembert's starting point remains the rep
resentation of the variable x as the sum x + an existing element, 
independent of the variable x , the increment b.x -then d' Alembert 
has not.yet discovered the true dialectic process of differentiation. 
And Marx makes the critical observation regarding d' Alembert: 
'D'Aiembert begins with (x + dx) but corrects the expression to 
(x+b.x), alias (x +h); a development now becomes necessary in 
which b.x or h is transformed into dx, but all of that development 
really proceeds.' (p.l28) 

As is well known, in order to obtain the result~ from the ratio of 

finite differences ~, d' Alembert resorted to the 'limit process'. In 

the textbooks which Marx utilised, this passage to the limit fore
shadowed the expansion of the expressionf(x + h) into all the powers 
of h, in which revealed in the coefficient of h raised to the first power 

·was the 'already contained' derivative f'(x). 

The problem therefore became that of 'liberating' the derivative 
from the factor h and the other terms in the series. This was done 
naturally, so to speak, by simply defining the derivative as the coef
ficient of h raised to the frrstpowerin the expansion off(x + h) into a 
series of powers of h. 

Indeed, 'in the frrst method I), as well as the rational one 2), the 
real coefficient sought is fabricated ready-made by means of the 
binomial theorem; it is found at once in the second term of the series 
expansion, the term which therefore is necessarily combined with h1 • 

All the rest of the differential process then, whether in 1) or in 2), is a 
luxury. We therefore throw the needless ballast overboard.' (p.98) 

The same thing was done by Lagrange, the founder of the next 

l 
f 
j 
I 

1 

j 
'fJ 

-~ 

l 

PREFACE XXIII 

stage in the development of the differential calculus: 'pure algebraic' 
calculus, in Marx's periodisation. 

At first Marx liked very much Lagrange's method, 'a theory of the 
derived function which gave a new foundation to the differential 
calculus'. Taylor's theorem, with which was usually obtained the 
expansion of f(x + h) into a series of powers of h, and which his
torically arose as the crowning construction of the entire differential 
calculus, with this method was turned into the starting point of 
differential calculus, connecting it immediately with the mathematics 
preceding calculus (yet not employing its specific symbols). Marx 
noted with respect to this, 'the real and therefore the simplest inter
connection of the new with the old is discovered as soon as the new 
gains its final form, and one may say, the differential calculus gained 
this relation through the theorems of Taylor and MacLaurin.* There
fore the thought frrst occurred to Lagrange to return the differential 
calculus to a frrm algebraic foundation.' (p.ll3) 

Marx found at once, however, that Lagrange did not make use of 
this insight. As is well known, Lagrange tried to show that 'generally 
speaking' - that is, with the exception of 'several special cases' in 
which differential calculus is 'inapplicable'- the expressionf(x + h) 
is expandable into the series 

f(x) + ph + qhl + rh 3 + ... , 

where p, q, r, . . . the coefficients for the powers of h, are new 
functions of x, independent of h, and 'derivable' from f(x). 

But Lagrange's proof of this theorem - in fact without much 
precise mathematic meaning - did not arise naturally. 'This leap 
from ordinary algebra, and besides by means of ordinary functions 
representing movement and change in general is as a fait accompli, it is 
not proved and is prima facie in contradiction to all the laws of con
ventional algebra ... ' (p.l77), writes Marx about this proof of 
Lagrange's. 

And Marx concludes with respect to the 'initial equation' of Lag
range, that not only is it not proved, but also that 'the derivation of 
this equation from algebra therefore appears to rest on a deception' 
(p.l!7). 

In the concluding part of the manuscript the method of Lagrange 

"'MacLaurin's Theorem can be regarded- as it was by Marx (pp.I 11, 112)- as a 
special case of Taylor's Theorem. -Ed. 
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appears as the completion of the method initiated by Newton and 
Leibnitz and corrected by d' Alembert; as the 'algebraicisation' based 
on Taylor by means of the method of formulae. 'In just such a manner 
Fichte followed Kant, Schelling Fichte, Hegel Schelling, and neither 
Fichte nor Schelling nor Hegel investigated the general foundations of 
Kant, of idealism in general: for otherwise they would not have been 
able to develop it further.' (p.ll9) 

We can see that in a historical sketch Marx gives us a graphic 
example of what in his opinion should be the application of the 
method of dialectical materialism in such a science as the history of 
mathematics. 

Completion of the present edition of Mathemlltical Manuscripts of 
Karl Marx required a great deal of preparation. The text· of the 
manuscripts was translated in · full; they were arranged 
chronologically; excerpts and summaries were separated from Marx's 
own statements; on the basis of analysis of their mathematical content 
the manuscripts were collected into units which can be read as a whole 
(in fact, many of the manuscripts do not make up notebooks, but are 
rather of separate sheets of paper in no sort of order). In the vast 
majority of cases it is known from which sources Marx drew his 
excerpts, or which he summarised. By comparison with the original 
works all of Marx's own comments have been identified in the sum· 
maries; all of Marx's independent work and notes have been trans
lated into Russian. 

The task of separating the personal opinions of Marx from his 
summaries and excerpts involved a series of difficulties. Marx wrote 

·his summaries for his own benefit, in order to have at hand the 
material he needed. As always, he made use of a large collection of the 
most varied sources, but if he did not consider the account worth 
special attention, if it was, for example, a contemporary textbook 
compiled and widely distributed in England, then Marx very fre
quently did not accompany his excerpts with an indication of from 
where they were drawn. The task is complicated still further by the 
fact that the majority of the books which Marx utilised are now 
bibliographical rarities. In the final analysis all this work could only be 
completed at first hand in England, where, in order to resolve this 
problem, were studied and investigated in detail the stocks of the 
extant literature in these libraries: the British Museum, London and 
Cambridge universities, University College London, Trinity and St. 
James's Colleges in Cambridge, the Royal Society in London, and 
finally the private libraries of the eminent 19th century Englishmen 
de Morgan and Graves. Inquiries were made in other libraries as well, 
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such as that of St. Catherine's College. For those manuscripts which 
by nature were prepared from German sources, the German historian 
of mathematics Wussing, at the request of the Institute, investigated 
the bibliographical resources of the German Democratic Republic. 

Photocopies of several missing pages of the manuscripts were 
kindly provided by the Institute of Social History in Amsterdam, 
where the originals of the mathematical manuscripts of K. Marx are 
preserved. 

Sincethemanuscriptsareofthenatureofroughdrafts,oneencoun
ters omissions and even errors in the copied excerpts. The cor
responding insertions or corrections are enclosed in square brackets. 
As a result the square brackets of Marx himself are indicated with 
double square brackets. Words which Marx abbreviated are written 
out in full, but the text is basically unchanged. In places obsolete 
orthography is even preserved. 

The primary language of the manuscripts is German. If a reference 
in the manuscripts is in French or English, Marx sometimes writes his 
comments in French or English. In such cases Marx's text turns out to 
be so mixed that it becomes hard to say in what particular language the 
manuscript is written. 

The dating of the manuscripts also entailed great difficulties. A 
detailed description of these difficulties is presented in the catalogue 
of manuscripts. This last lists the archival number of the manuscript, 
its assigned title, and the characteristics of either its sources or its 
content. Where the title or subtitle is Marx's own it is written in 
quotation marks in the original language and in Russian translation. 
In the first part of the book the titles not originating with Marx are 
marked with an asterisk. 

The inventory of the manuscripts is given in the sequence of the 
arrangement of the archival sheets. Marx's own enumeration, by 
number or letters, is given in the inventory together with the indi· 
cation of the archival sheets. An indication of the archival sheets on 
which they are found accompanies the published texts. All the manu· 
scripts stem from fond I, , opuscule I. 

The language of Marx's mathematical manuscripts in many cases 
departs from our usual contemporary language, and in order to 
understand his thought it is necessary to refer to the sources he used, 
to make clear the meaning of his terms. In order not to interrupt 
Marx's text, we place such explanations in the notes at the end of the 
book. Then, where more detailed information about the subject
matter of the sources consulted by Marx is found necessary, it is given 
in the Appendix. All such notes and references are of a purely infor· 
mational character. 
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In Marx's texts are a great number of underlinings, by means of 
which he emphasised the points of particular importance to him. All 
these underlinings are indicated by means of italics. 

The book was prepared by S.A. Y anovskaya, professor of theM. V. 
Lomonosov Moscow Government University, to whom also are due 
the Preface, the Inventory of mathematical manuscripts (compiled 
with the assistance of A.Z. Rybkin), the Appendices and the Notes. 
Professor K.A. Rybnikov took part in the editing of the book, per
forming among other tasks the greater part of the work of researching 
the sources used by K. Marx in his work on the 'Mathematical 
Manuscripts'. In the preparation of the present edition the comments 
and advice of Academicians A.N. Kolmogorov and I.G. Petrovskii 
were carefully considered. 

A.Z. Rybkin, chief editor for the physical-mathematical section of. 
Nauka Press, and O.K. Senekina, of the Institute for Marxism
Leninism of the Central Committee of the Communist Party of the 
Soviet Union, ditected all the work of editing the book, preparing it 
for publication and proof-reading it. The book includes an index of 
references quoted and consulted, as well as an index of names. 
References .in Marx's text are denoted in the indices by means of 
italics. 
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ENGELS TO MARX 
in London 

August 10, 1881 

Dear Mohr, 

. . . Yesterday I found the courage at last to study your mathe
matical manuscripts even without reference books, and I was pleased to 
find that I did not need them. I compliment you on your work. The 
thing iS as clear as daylight, so that we cannot wonder enough at the way 
the mathematicians insist on mystifying it. But this comes 

from the one-sided way these gentlemen think. To put ;t = ~, 
firmly and point-blank, does not enter their skulls. And yet it is clear 

that ;t can only be the pure expression of a completed process if 

the last trace of the quanta x and y has disappeared, leaving the 
expression of the preceding process of their change without any 
quantity. 

You need not fear that any mathematician has preceded you here. 
This kind of differentiation is indeed much simpler than all others, so 
that just now I applied it myself to derive a formula I had suddenly 
lost, confirming it afterwards in the nsual way. The procedure must 
have made the greatest sensation, especially, as is clearly proved, since 
the usual method of neglecting dxdy etc. is positively false. And that is 

the special beauty of it: only if ;t = ~ is the mathematical opera

tion absolutely correct. 
So old Hegel guessed quite correctly when he said that dif

ferentiation had for its basic condition that the variables must be 
raised to different powers, and at least one of them to at least the 

second, or t, power. Now we also know why. 

If we say that iny = f(x) the x andy are variables, then this claim 
has no further consequences, as long as we do not move on, and x and 
Y are still, pro tempore, in fact constants. Only when they really 

XXVII 



change, i.e. inside the function, do they indeed become variables, and 
only then can the relation still hidden in the original equation reveal 

· itself - not the relation of the two magnitudes but of their varia-

bility. The first derivative : shows this relation as it happens in 

the course of real change, i.e. in each given change; the completed 

derivative- ;t shows it in its generality, pure, and hence we can 

come from£ to each :, while the latter itself only covers the special 

case. However, to pass from the special case to the general rela
tionship, the special case must be abolished (aufgelwben) as such. 
Hence, after the function has passed through the process from x to x 
with all its consequences, x' can be allowed calmly to become x again; 
it is no longer the old X, which was Variable in name only; it has passed 
through actual change, and the result, of the change remains, even if 
we again abolish (aufheben) it. 

At last we see clearly, what mathematicians have claimed for a long 
time, without being able to present rational grounds, that the 
differential-quotient is the original, the differentials dx and dy are 
derived: the derivation of the formulae demands that both so-called 
irrational factors stand at the same time on one side of the equation, 

andonlyifyouputtheequation backintothis its first form£= ](x), 

as you can, are you free of the irrationals and instead have their 
rational expression. 

The thing has taken such a hold of me that it not only goes round my 
head all day, but last week in a dream I gave a chap my shirt-buttons to 
differentiate, and he ran off with them. 

Yours 
FE 
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ENGELS TO MARX 

in Ventnor 

London, November 21, 1882 
Dear Mohr, 

... Enclosed a mathematical essay by Moore. The conclusion that 
'the algebraic method is only the differential method disguised' refers 
of course only to his own method of geometrical construction and is 
pretty correct there, too. I have written to him that you place no value 
on the way the thing is represented in geometrical construction, the 
application to the equations of curves being quite enough. Further, 
the fundamental difference between your method and the old one is 
that you make x change to x', thus making them really vary, while the 
other way statts from x + h, which is always only the sum of two 
magnitudes, but never the variation of a magnitude. Your x there
fore, even when it has passed through x' and again becomes the first 
x, is still other than it was; while x remains f'IXed the whole time, if h 
is first added to it and then taken away again. However, every 
graphical representation of the variation is necessarily the rep
resentation of the completed process, of the result, hence of a quantity 
which became constant, the line x ;its supplement is represented as 
x + h, two pieces of a line. From this it already follows that a 
graphical representation of how x', and again becomes x, 
is impossible .. 
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MARX TO ENGELS 

November 22, 1882 

1, St Boniface Gardens, 
Ventnor 

Dear Fred, 

in London 

· ... Sam, as you saw immediately, criticises the analytical method 
applied by me by just pushing it aside, and instead busies himself with 
the geometrical application, about which I said not one word. In the 
same way, I could get rid of the development of the proper so-called 
differential method-beginning with the mystical method of Newton 
and Leibnitz, then going on to the rationalistic method of d' Alembert 
and Euler, and finishing with the stricdy algebraic method of La
grange (which, however, always begins from the same original basic 
oudook as Newton-Leibnitz) -I could get rid of this whole historical 
development of analysis by saying that practically nothing essential 
has changed in the geometrical application of the differential calculus, 
i.e. in the geometrical representation. 

The sun is now shining, so the moment for going for a walk has 
come, so no more pro nunc of mathematics, but I'll come back later to 
the different methods occasionally in detail ... 

XXX 
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'ON THE CONCEPT OF 
THE DERIVED FUNCTION'' 

I 

Let the independent variable x increase to x 1 ; then the 
dependent variable y increases to y 1 } 

Here in I) we consider the simplest possible case, where x 
appears only to the first power. 

1) y = ax; when x increases to x 1 , 

y 1 =ax, and y 1 - y = a(x 1 - x) . 

Now allow the differential operation to occur, thatis, we let x 1 

take on the value of x. Then 

x 1 = x; X1- X = 0, 
thus 

a(x 1 -x) =a.O=O. 

Furthermore, since y only becomes y 1 because x increases 
to x 1 , we have at the same time 

y, = y; y,-y=O. 
Thus 

y 1 - y = a(x 1 - x) 

changes to 0 = 0. 
First making the differentiation and then removing it there

fore leads literally to nothing. The whole difficulty in under
standing the differential operation (as in the negation of the 
negation generally) lies precisely in seeing how it differs from 
such a simple procedure and therefore leads to real results. 

3 
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If we divide both a(x 1 - x) and the left side of the cor-
responding equation by the factor x 1 - x, we then obtain 

Y1- y 
--=a. 
x 1 - x 

Since y is the dependent vaooble, it cannot carry out any 
independent motion at all, y 1 therefore cannot equal y and 
y 1 - y = 0 without x 1 first having become equal to x. 

On the other hand we have seen thatx 1 cannot become equal 
toxin the function a(x 1 - x) without making the latter= 0. 
The factor x 1 - x was thus necessarily a finite difference' when 
both sides of the equation were divided by it. At the moment of 
the construction of the ratio 

Y1- y 
Xt- X 

x 1 - x is therefore always a finite difference. It follows that 

Y1- y 
x 1 - X 

is a ratio of finite differences, and correspondingly 

Y1- Y f;.y 
--=-
x1-x f;.x 

Therefore 

y 1 - y or 4 f;.y = a 
X 1 -X 6.x ' 

where the constant a represents the limit value ( Grenzwert) of 
the ratio of the finite differences of the variables. 5 

Since a is a constant, no change may take place in it; hence 
none can occur on the right-hand side of the equation, which has 
been reduced to a. Under such circumstances the differential 
process takes place on the left-hand side 

Y1- Y f;.y 
-~- or 
xt-x 6x' 

DIFFERENTIAL CALCULUS 5 

and this is characteristic of such simple functions as ax. 
If in the denominator of this ratio X 1 decreases so that it 

approaches x, the limit of its decrease is reached as soon as it 
becomes x. Here the difference becomes x 1 - x 1 = x- x = 0 
and therefore also y 1 - y = y- y = 0. In this manner we 
obtain 

0 
0 =a. 

Since in the expression ~ every trace of its origin and its 

meaning has disappeared, we replace it with Z , where the 

finite differences x 1 - x or f;.x and y 1 - y or f;. y appear 

symbolised as cancelled or vanished differences, or ~~ 

changes to Z . 
Thus 

dy =a 
dx · 

The closely-held belief of some rationalising mathematicians 
that dy and dx are quantitatively actually only infinitely small, 

only approaching ~ , is a chimera, which will be shown even 

more palpably under II). 
As for the characteristic mentioned above of the case in 

question, the limit value ( Grenzwert) of the finite differences is 
therefore also at the same time the limit value of the diffe
rentials. 

2) A second example of the same case is 

y =X 
; Yt- y = Xt- X ; 

Yt = Xt 

y,- y f;.y 
= 1 ; 

0 dy = 1 -- or or X1- X f;.x 0 dx · 
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II 

When in y = f (x), the function [o~ x appears on the 
right-hand side of the equation in its developed algebraic expre
ssion, 6 we call this expression the original function of x, its first 
modification obtained by means of differentiation the pre
liminary 'derived' function of x and its final form obtained by 
means of the process of differentiation the' derived' function of x. 7 

I) y = ax3 + bx2 + ex- e . 

If x increases to x 1 , then 

Y1 = ax'l. + bxi + cx 1 - e , 

Y1- Y = a(x'l.- x3 ) + b(x'J.- x 2 ) + c(x 1 - x) 

= a(x 1 - x) (x'J. + x 1x + x 2 ) 

+ b(x 1 - x) (x 1 + x) + c(x 1 - x) 

Therefore 

y - y L::.y 
-

1
-- or - = a(x'J. + x 1 x+ x 2 ) + b(x 1 + x)+ c. 

x 1 - x L::.x 

and the preliminary 'derivative' [is] 

a(xi + X1X + x2 ) + b(x 1 + x) + c 

[and it] is here the limit value (Grenzwert) of the ratios of the 
finite differences; that is, however small these differences may 

become, the value of~ is given by that 'derivative'. But this is 

not the same case as that under I) with the limit value of the 
ratios of the differentials.* 

---
*In a draft of this work (4146, Pl.4), the following appears: 'On the other 
hand, the process of differentiation (Differentialprozess) now takes place in 
the preliminary "derived" function of x (on the right-hand side), while any 
movement of the same process on [the] left-hand side is necessarily pro
hibited." -Ed. 

?' 

~ 
¥_ 

-!';! 
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When the variable x 1 . is decreased in the function 

a(xi + x 1x+ x 2 ) + b(x 1 + x) + c 

until it has reached the limit of its decrease, that is, has become 
the same as x, [then] xi is changed to x 2 , x 1 x to x 2 , and 
x1 + x to 2x, and we obtain the 'derived' function of x: 

3ax2 + 2bx + c . 

It is here shown in a striking manner: 
First: in order to obtain the 'derivative', x 1 must be set= x; 

therefore in the strict mathematical sense x 1 - x = 0, with no 
subterfuge about merely approaching infinitely [closely]. 

Second: Although we set x 1 = x and therefore x 1 - x = 0, 
nonetheless nothing symbolic appears in the 'derivative'.* The 
quantity x 1 , although originally obtained from the variation of 
x , does not disappear; it is only reduced to its minimum limit 
value. = x. It remains in the original function of x as a newly 
introduced element which, by means of its combinations partly 
with itself and partly with the x of the original function, finally 
produces the 'derivative', that is, the preliminary derivative 
reduced to its absolute minimum quantity. 

The reduction of x 1 to x within the first (preliminary) 

'derived' function changes the left-hand side [from] z;: to~ or 

dy h dX ' t us: 

0 dy 
- or - = 3ax2 + 2bx + c 
0 dx ' 

*The draft contains the following statement: 'Finding "the derivative" from 
the original function of x proceeds in such a manner, that we first take a finite 
differentiation (endliche Differentiation); this provides a preliminary "deriva~ 
tive'' which is the limit value (Grenzwerl) of~. The process of differentiation 

(Differentialprozess) to which we then proceed, reduces this limit value to its 
absolute minimum quantity (Minimalgrdsse), The quantity x

1 
introduced in 

the first differentiation does not disappear , , .' ~Ed. 
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so that the derivative appears as the limit value of the ratio of the 
differentials. 

The transcendental or symbolic mistake which appears only 
onthe left-hand side has perhaps already lost its terror since it 
now appears only as the expression of a process which has 
established its real content on the right-hand side of the equ
ation. 

In the 'derivative' 

3ax2 + 2bx + c 

the variable x exists in a completely different condition than in 
the original function of x (namely, in ax3 + bx2 + ex- e). It 
[this derivative] can therefore itself be treated as an original 
function in turn, and can become the mother of another 'deriva
tive' by the repeated process of differentiation. This can be 
repeated as long as the variable x has not been finally removed 
from one of the 'derivatives'; it therefore continues endlessly in 
functions of x which can only be represented by infinite series, 
which [is] all too often the case. 

d2 d' The symbols dx; , aJ, etc., only display the genealogical 

register of the 'derivatives' with respect to the original given 
function of x . They are mysterious only so long as one treats 
them as the starting point of the exercise, instead of as merely the 
expressions of the successively derived functions of x. For it indeed 
appears miraculous that a ratio of vanished quantities should 
pass through a new, higher degree of disappearance, while 
there is nothing wonderful in the fact that 3x2

, for example, can 
pass through the process of differentiation as well as its mother 
x3 • One could just as well begin with 3x2 as with the original 
function of x. 

But nota bene. The starting point of the process of dif-

ferentiation actually is~~ only in equations as [above] under I), 

where x appears only to the first power. Then, however, as was 
shown under I), the result [is]: 

DIFFERENTIAL CALCULUS 9 

L::,.y. dy 
- =a=-
C:,.x dx · 

Here therefore as a matter of fact no new limit value is found 

from the process of differentiation which t passes through; (a 

result] which remains possible only so long as the preliminary 

'derivative' includes the variable x, so long, therefore, as :~ 
remains the symbol of a real process.* 

Of course, it is in no sense an obstacle, that in the differential 

calculus the symbols~ , ~:; , etc., and their combinations also 

appear on the right-hand side of the equation. For one knows as 
well that such purely symbolic equations only indicate the 
operations which are then to be applied to the real functions of 
variables. 

2) y = axm. 
As x becomes x 1 , then y 1 = axT and 

Y1- y = a(xT- xm) 

= a(x 1 - x) (xT-1 + xr-•x + xJ"-3x2 + etc. 

up to the term xT-m xm-1 ) • 

Therefore 
Y1- y C:,.y -
--or- -
X 1- X f::,.x 

a(xT-1 + xr-•x + xJ"-3x2 + ... 

+ xT-mxm-1 ) . 

We now apply the process of differentiation to this 'pre
liminary derivative', so that 

*TI;draft (Pl. 7) includes this sentence: 'This can only come about, where 
the preliminary ''derived'' function includes the variable x, through whose 

motion, therefore, another truly new value may be formed, so that fx is 

the symbol of a real process.' -Ed. 
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x 1 = x or x 1 - x = 0 

and 

x~-1 is changed into xm-1; 

xT-2x into xm-zx = xm-2+1 = xm-t 

xT-3x2 into xm-3x2 = xm-3+2 = xm-1 , 

and finally, 
X't_m-m xm-1 into xm-m xm-1 = xotm-1 = xm-1. 

We thus obtain the function xm-1 m times, and the 'deriva
tive' is therefore maxm-1 • 

Due to the equivalence of x 1 = x within the 'preliminary 

derivative',* on the left-hand side ~ is changed to ~or~; 
therefore 

dy 

d
- = maxm-1 

X • 

All of the operations of the differential calculus could be 
treated in this manner, which would however be a damned 
useless mass of details. Nonetheless here is another example; 

. since up to now the difference x 1 - x appeared only once in the 
function of x and therefore disappeared from the right-hand 
side by means of the formation of 

y 1 - Y or /';.y. 
x 1 - x D.x 

This [is] not the case in the following: 

3) y = a•; 
Let x become x 1 • Then 

Y1 = ax 1 

*On the right~hand side) that is. -Ed. 

DIFFERENTIAL CALCULUS 

Therefore 

y 1 - y = a••- a• = a•(a•·-•- 1) . 

[But] 
a•,-• = { 1 + (a- 1))'·-•, 

and 

(1 + (a- 1) r·-· = 

11 

(x 1 - x) (x - x- 1) 
1 + (x 1 - x) (a- 1) + • ~ . (a- 1)2 + etc.8 

Therefore 

Y1- Y = a•(a•·-•- 1) 

• 9 

=a•j(x1- x)(a- 1) + Cx1- x) (x1- x 1) 1.
2 

(a- 1)2 

+ (x 1- x)(x 1- x- 1) (x,- x- 2) (a- 1)' +etc.). 

1.2. 3 

Y1- y 
X1- X 

D.y = 
or 6x 

x - x- 1 2 a• j<a- 1) + 1 (a- 1) 
1.2 

+ (x1- x- 1) (x1- x- 2) (a- 1)'+ etc.). 
1.2. 3 

Now as x, = x and thus x 1 - x = 0, we obtain for the 
'derivative': 

a• j<a- I) - ! (a- 1)2 + ! (a- 1) 3 - etc.[. 
2 3 . 



12 MATHEMATICAL MANUSCRIPTS 

Thus 

dy 1 1 ) dx = a• \Ca- 1)- -zCa- 1) 2 + 3Ca- 1) 3
- etc. 

If we designate the sum of the constants in parentheses A, 
then 

dy = Aa• · 
dx ' 

but this A= the Napierian logarithm of the number* a, so that: 

dy · . dax 
-,or, when we replace y by tts value:- =log a .a•, 

* * 
and 

da• = log a .a•dx . 

Supplementary 10 

We have considered 

l) cases in which the factor (x 1 - x) [occurs] only once in 
[the expression which leads to] the 'preliminary derivative' -
i.e. [in] the equation of finite differences"- so that by means 
of the division of both sides by x 1 - x in the formation of 

y,- y L;,.y 
--or
x1- x & 

this same factor is therefore eliminated from the function of x. 

2) (intheexampled(a•)) casesinwhichfactorsof(x 1 - x) 

remain after the formation of ~ . 12 

3) Yet to be considered is the case where the factor x 1 - x is 
not directly obtained from the first difference tquation ( [which 
leads to] the 'preliminary derivative'). 

* Original: 'root'. -Trans. 

:;.; 
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y = Ja 2 + x 2 , 

Yt = Ja• +·xi , 

Yt- Y = Ja• + x'i- Ja 2 + ~2; 

13 

we divide the function of x, the left-hand side as well, there
fore, by x 1 - x. Then 

Y 1 - Y ( L;,.y) _ fa• + x'i - J a2 + x 2 
or - - -'----~--"-=---'---=-

x1- X fu X 1- X 

In order to rationalise the numerator, [both J numerator and 

denominator are multiplied by )a2 + x'i + Ja• + x2
, and we 

obtain: 

But 

!;,.y = 
fu 

a2 + xi- (a2 + x 2
) 

(x ,- x)( Ja 2 + xi+ [ti2 + x2
) 

_ xi- x2 

- (x,- x)(Ja 2 + xi+ Ja 2 + x2 ) 

xi- x2 

(x 1- x)(ja2 + xi+ fa 2 + x2 ) 

_ (x 1 - x)(x 1 + x) 

- (x 1- x)C)a2 + xi+ Ja 2 + x 2) 

So that: 
Liy X +X 

Lix = Ja 2 +xi+ ,ta2 + x 2 ' 
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Now when x 1 becomes= x, or x,- x = 0, then 

dy 2x 
dx = 2~a2 + x 2 = 

X 

~a2 + xz. 

So that 

dy or dja2 + x2 xdx 
~az + x2 

I 
·~ 

* f 
'f, 

·' 

-~ 
-a 

I 
~ 
-ij 

l 
oft 

~ 

ON THE DIFFERENTIAL'3 

I 

I) Letf(x) or y = uz be a function to be differentiated; u 
and z are both functions dependent on the independent var
iable x . They are independent variables with respect to the 
function y, which depends on them, and thus on x. 

y, = u,z,, 
y 1 -y = u1s 1 - uz = s 1 (u 1 - u)+ u(s1 -z), 

Yt- Y e.y u,- u z 1 - s z 1 e.u ue.z 
--- or - = z 1 ---+ u --- = -- + --.* 
x 1 -x & x 1 -x x 1 -x & & 

Now on the right-hand side let x 1 = x, so that x 1 - x. = 0, 
likewise u 1 - u = 0, z 1 - s = 0; so that the factor z 1 in 

s 1 u 1 
- u also goes to s; fmally on the left-hand side 

X1 X 

Yt- y = 0. Therefore: 

dy du dz 
A) dx = z dx + u dx · 

Which equation, when all its terms are multiplied by the 
common denominator dx, becomes 

B) dy or d(uz) = z du + u dz .'4 

2) Consider for the time being the first equation A): 

dy du dz 
-=z-+u-
dx dx dx· 

·-* The last pan of the equation was apparendy added by Engels -Ed. 

L 15 
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In equations with only one variable dependent on x, the final 
result has always been 

dy = f'(x) ' 
dx 

andf'(x), the first derived function* of/(x), has been free15 of 
all symbolic expressions, for example, mxm-1 when xm is the 
original function of the independent variable x. As a direct 
result of the process of differentiation which f(x) had to pass 
through in order to be transformed into f'(x), its shadow image 

(Doppelganger) ~ or : appeared as the symbolic equivalent on 

the left-hand side opposite f'(x), the real differential co

efficient. 16 Alternately ~ or ! found its real equivalent in['( x). 

In equation A) by contrast, f'(x), the first derivative of uz, 
itself includes symbolic differential coefficients, which are 
therefore present on both sides while on neither is there a real 
value. Since, however, uz has been handled in the same manner 
as the earlier functions of x with only one independent variable, 
this contrast is obviously a result of the peculiar character of the 
beginning function itself, namely uz. A more complete treat
ment of this is found under 3). 

For the moment, it remains to be seen whether there are any 
. twists in the derivation of equation A). 

On the right-hand side 

U 1 - U /::,.u d Z 1 - Z l:>.z 
-- or - an -- or -
X1- X /::,.x Xt- X /::,.x 

0 0 -become 0 , 0 , because x 1 has become - x, so that x 1 - x. = 0. 

In place of~, % we put ~· ~ without further ado. Was 

that permissible, since these~ figure here as the multipliers of 

the variables u and z respectively, while in cases with one 

* Synonymous with 'derivative•- Trans. 

t· 
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independent variable the single symbolic differential coef

ficient - ~or : - has no muitiplier other than the con

stant, I? 

If we place the primitive problematic form of: , ~ on 

the right-hand side it becomes: z~ + u%. If we then multiply 

z and u by the numerators of the ~ accompanying them, 

we obtain: % + %; and since the variables z and u themselves 

become = 0,17 as are their derivatives· as well, so that [we 
obtain] finally: · 

0 du dz 
o= 0 and not z dx +u dx. 

This procedure, however, is mathematically false. 
Let us take, for example 

U1- U /::,.u 
--=-
x,-x l:>.x 

one does not fU'St obtain the numerator = 0 because one has 
begun with it and set u1 - u = 0, but rather the numerator only 
becomes 0 or u 1 - u = 0 because the denominator, the dif
ferenceoftheindependentvariablequantitiesx, thatisx 1 - x, 
has become= 0. 

Therefore what arises opposite the variables u and z is not 

0 but (%)• whose numerator in this form retn(lins inseparable 

from its denominator. Consequently as a multiplier % then 

could nullify its coefficients only when and so far as 

0 
0 = 0. 

Even in the usual algebra it would be false, in the case where a 
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product P . '; takes the forin P . ~ , to conclude immediately 

that it must be = 0 , although it 711101 be set always = 0 here, 
since we can begin 18 the nullification arbitrarily with 
numerator or denominator. 

x2- a2 
For example, P. x a Let [because x = a] x2 be 

set = a2 , so that x2 
- a2 = 0; we then obtain: P . % = % , 

and the last [term] may be set = 0 , since % can just as 

readily be 0 as any other number. 
By contrast, let us reduce x2 - a2 to its factors, so that we 

obtain 

x- a 
P .--.(x+ a) = P(x +a), and sincex = a, 19 = 2Pa. 

x- a 

Successive differentiation - for example, of x3 , where ~ first 

becomes = 0 only in the fourth derivative, since in the third the 
variable x has run out and is replaced by a constant - proves 

that% becomes = 0 only under completely defmed conditions. 

In our case, however, where the origin of~,~ is known to 

be the differential expression of ~ , ~ respectively, the 

two deserve, as above, the 'uniform' (die Uniform): , : . 

3) In the equations, such asy = xm ,y = a• etc., which have 
been treated previously, an original function of x stands opposite 
a y 'dependent' on it. 

Iny = uz, both sides contain 'dependent [variables]'. While 
herey depends directly on u and z, so in turn u andz (depend] 
as well on x. This specific character of the original function uz 
necessarily stamps on its 'derivatives' as well. 

That u is a function of x, and z another function of x 
is represented by: 

I 
I 
I 

:l 

l 
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•u = f(x) , u1 - u = f(x 1)- f(x), 

and 

z = cp(x) ; z 1 - z = cp(x 1)- cp(x) . 

But neither the beginning equation for J(x) nor for cp(x) 
leads to an original function of x, that is, a defmite value* in x. 
Consequently u and z figure as mere names, as symbols of 
functions of x; therefore as well only the general forms of this 
ratio of dependence (Abhiingigkeitsverhiiltnis) : 

u 1 - u =f(x 1)- J(x) z 1 - z = cp(x 1 )- cp(x) 
X1- X X1- X Xt- X x 1 - x 

is generated immediately by the process of taking the deriva
tive. The process has now reached the point where x 1 is set = 
x, so that x 1 - x = 0, and those general forms are transformed 
to 

du = df(x) dz = dcp(x) 
dx dx dx .dx 

and the symbolic differential coefficients ~= , : become as 

such incorporated into the 'derivatives'. 

In equations with only one dependent variable, : has no 

other content at all than : , : have here. It is also merely 

the symbolic differential expression of 

Y1- y 
x1 - X 

f(x,)- f(x) 

X 1 - X 

20 

Although the nature of ~= , : - that is, of symbolic coef

ficients in general - is in no way altered when they appear 
within the derivative itself, and so on the right-hand side of the 

* 'Definite expression' is meant- Ed. 
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differential equation as well, nonetheless their role and the 
character of the equation are thereby altered. 

Let us represent the original function of uz, in combination, 
by f(x), and their first 'derivative' by f(x), 

then becomes: 

dy du dz 
- =z-+u-
dx dx dx 

dy=f(x). 
dx 

We have obtained this very general form for equations with 
only one dependent variable. In both cases the beginning forms 

of fx arose from . the process of taking the derivative 

(Ableitungsprozesse ), which transforms f(x) into f(x). So soon, 

therefore, as f(x) becomes f(x), fx stands opposite the latter 

as its own symbolic expression, as its shadow image (Dop
pelgiinger) or symbolic equivalent. 

In both cases, therefore, fx plays the same role. 

It is otherwise with: , :. Together with the other elements 

of f'(x), into which they are incorporated, in ~ they meet 

with their symbolic expression or their symbolic equivalent, 
but they themselves do not stand opposite the f'(x), <p'(x) 
whose symbolic shadow images they would be in turn. They are 
brought into the world unilaterally, shadow figures lacking the 
body which cast them, symbolic differential coefficients with
out the real differential coefficients, that is, without the cor
responding equivalent 'derivative'. Thus the symbolic diffe
rential coefficient becomes the autonomous starting point whose 
real equivalent is first to be found. The initiative is thus shifted 
from the right-hand pole, the algebraic, to the left-hand one, 
the symbolic. Thereby, however, the differential calculus also 
appears as a specific type of calculation which already operates 

I 
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independendy on its own ground (Boden). For its starting 

· dudzbel nl · d th 'al ·· pomts dx , dx ong o y to 1t an ate rna ernatic quantities 

characteristic of it. And this inversion of the method arose as a 
result of the algebraic differentiation ofuz. The algebraic method 
therefore inverts itself into its exact opposite, the differential 
method.* 

Now, what are the corresponding 'derivatives' of the sym-

b I. d'a ' I ffi · du dz ' Th b · ' · o 1c •.uerenna coe ICients - , - r e egmrung equation 
dx dx 

y. = uz provides no data for the resolution of this question. This 
last [question] may still be answered if one substitutes arbitrary 
original functions of x for u and z. For example, 

u = x4 ; z=x3 +ax2 • 

Thereby, however, the symbolic differential coefficients 

~: , : are suddenly transformed into operational symbols 

(Operationssymbole ), into symbols of the process which must be 
carried out with x4 and x3 + ax2 in order to find their 'deriva
tives'. Originally having arisen as the symbolic expression of 
the 'derivative' and thus already fmished, the symbolic di(fe
rential coefficient now plays the role of the symbol of the 

* The draft of the work 'On the Differential' (4148, P1.16-17) contains this 
paragraph: 

'~ , ~ thrown over. Born within the derivative, they, together with the 

remaining elements of the same, meet in~ their own symbolic exp!ession, 

therefore their symbolic equivalent. But they themselves exist without equi
valent, real differential coefficients, that is without the derivative f'(x) , cp '(x) 
whose symbolic expression they in turn had been. They are the completed 
differential symbols whose real values figure as shadows whose bodies are to 
be sought first. The problem has thus been turned around before one's eyes. 
The symbolic differential coefficients have become autonomous starting 
Poinrs, for whom the equivalent, the real differential coefficient or the cor
responding derived function, is first to be sought. Thereby the initiative has 
been shifted from the right-hand pole to the left. Since this inversion of the 
rnethod originated from the algebraic manipulation of the function uz, it has 
itself been demonstrated algebraically.'- Ed. 

L 
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operation of differentiation which is yet to be completed. 
At the same time the equation 

dy du dz 
-=z-+u-
dx dx dx' 

from the beginning purely symbolic, because lacking a side free 
of symbols, has been transformed into a general symbolic oper
ational equation. 

I remark further that* from the early part of the 18th century 
right down to the present day, the general task of the diffe
rential calculus has usually been formulated as follows: to find 
the real equivalent of the symbolic differential coefficient. 

4) 
dy du dz 

A) - =z -+ u-. 
dx dx dx 

This is obviously not the simplest expression of equation A), 
since all its terms have the denominator dx in common. Let this 
be struck out, and then: 

B) d(uz) or 4Y = zdu + udz . 
Any trace in B) of its origin in A) has disappeared. It is 

therefore equally as valid when u and z depend on x as when 
they depend~ly reciprocally on one another, without any 
relation to x atall.21 From the beginning it has been a symbolic 
equation and from the beginning could have served as a sym
bolic operational equation. In the present case it means, that 
when 

y = zu etc., 
that is = a product of any arbitrary number of variables mul
tiplied together, then dy = a sum of products, in each one of 
which one of the factors is treated as a variable while the other 
factors are treated as constants, etc. 

For our purpose, namely the further investigation of the 
differentialofy in general, form B) nonetheless will not do. We 
therefore set: 

* The following is in the draft: 'save for a few exceptions'. -Ed. 
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u=x4 ,. z=x3 +ax2 . 

so that 

du = 4x3dx, dz = (3x2 + 2ax)dx , 

as was proved earlier for equations with only one dependent 
variable. These values of du , dz are brought into equation A), 
so that 

A) dy ( 3 2 )4x3dx 4 (3x2 + 2ax)dx d h 
dx=x+ax~+x dx ;anten 

ix = (x3 + ax2 )4x3 + x4 (3x2 + 2ax) ; 

therefore 

dy = !(x3 + ax2 )4x3 + x4 (3x2 + 2ax)) dx. 

The expression in brackets is the first derivative of uz; since, 
however, uz = f(x), its derivative is= f'(x); we now substitute 
the latter in place of the algebraic function, and so: 

dy = f'(x)dx . 

We have already obtained the same result from an arbitrary 
equation with only one variable. For example: . 

y = xm, 

: = mxm-l = f'(x) , 

dy = f'(x)dx. 

In general we have: if y = f(x), whether this function of x is 
now an original function in x or contains a dependent variable, 
then always dy = df(x) and df(x) = f'(x)dx, and so: 

B) dy = f'(x )dx is the most generally valid form of the 
differential of y. This would be demonstrable immediately also 
if the givenf(x) weref(x,z), that is a function of two mutually 
independent variables. For our purposes, however, this would be 
superfluous. 
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II 

1) The differential 

dy = f'(x)dx 

appears right away to be more suspicious than the differential 
coefficient 

from which it is derived. 

dy = ftx) 
dx 

In dy = .Q_ the numerator and denominator are inseparably 
dx 0 . 

bound; indy = f(x)dx they are apparendy separated, so that 
one is forced to the conclusion that it is only a disguised expre
ssion for 

0=/'(x).O or 0=0, 

whereupon 'nothing's to be done' ('nix zu wolle'). 
A French mathematician of the first third of the 19th cen

tury, who is clear in a completely different manner than the 
well-known [to you] 'elegant' Frenchman,22 has drawn a con
nection between the differential method and Lagrange's algeb
raic method: - Boucharlat says: 

If for example ! = 3x2 , then f.. alias% , or rather its value 

3x2 , is the differential coefficient of the function y. Since ~ 
is thus the symbol which represents the value 3x2

, dx must 
always stay (stehn )* under dy, but in order to facilitate algebraic 

operation we treat fx as an ordinary fraction and t = 3x2 as an 

ordinary equation. By removing the denominator from the 
equation one obtains the result 

dy = 3x2 dx , 

which expression is called the differential of y'. 23 

* The draft has: 'remain' (stehn bleiben)- Ed. 

J 

1 

~ 
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Thus, in order 'to facilitate algebraic operation', one intro
duces a demonstrably false formula which one baptises the 
'differential'. 

In fact the situation is not so nasry. 

In r the numerator is inseparable from the denominator, 

but why? Because both only express a ratio if they are not 
separated, something like (dans l' espece) the ratio24 reduced to 
its absolute minimum: 

Y1- Y = f(x 1 )- f(x) 
x 1 - x x 1 - x 

·where the numerator goes to 0 because the denominator has 
done so. Separated, both are 0; they lose their symbolic mean
ing, their reason. 

As soon, however, as x 1 - x = 0 achieves in dx a form which 
is manifested without modification as the vanished difference in 
the independent variable x, so that dy as well is a vanished 
difference in the function of x or in the dependent [variable] y, 
then the separation of the denominator from the numerator 
becomes a completely permissible operation. Wherever dx 
stands now, such a change of position leaves the ratio of dy to 
dx undisturbed. dy = f'(x )dx thus appears to us to be an 
alternative form of 

dy 
- = f'(x) 
dx 

and may always be substituted for the latter. 25 

2) The differential dy = f'(x )dx arose from A) by means of a 
direct algebraic derivation (see I ,4 ), while the algebraic deri
vation of equation A) had already shown that me differential 
symbol, somewhat like (dans l'espece) the symbolic differential 
coefficient which originally emerged as a purely symbolic 
expression of me algebraically performed process of dif
ferentiation, necessarily inverts into an independent starting 

* The draft has: 'In the form ~· -Ed. 
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point, into a symbol of an operation yet to be performed, into an 
operational symbol, and thus the symbolic equations which 
have emerged along the algebraic route also invert into sym
bolic operational equations (Operationsgleichungen ). 

We are thus doubly correct in treating the differential 
y = f'(x)dx as a symbolic operational equation. So we now 
know a priori, that if 

y = f(x) [then] dy = df(x) , 

that if the operation of differentiation indicated by df(x) is 
performed on f(x), the result is dy = f(x )dx, and that from 
this results finally 

dy = f(x) . 
dx 

As well, however, from the first moment that the differential 
functions as the starting point of the calculus, the inversion of 
the algebraic method of differentiation is complete, and the 
differential calculus itself therefore appears, a unique, specific 
method of calculating with variable quantities. 

In order to make this more graphic I will combine at once all 
the algebraic methods which I have used, while setting simply 
f( x) in place of a fixed algebraic expression in x, and the 
'preliminary derivative' (see the first manuscript*) will be 
designated as f'(x) to distinguish it from the definitive 'deriva-
tive', f'(x). Then, if 

[then] 

f(x) = y, f(x,) = Y1 • 

f(x,)- f(x) = y 1 - y or 6y, 

f'(x) (x 1 - x) = y 1 - y or 6y. 

The preliminary derivative mustt contain expressions in x 1 

* See 'On the Concept of the Derived Function', p.3 above- Ed. 

t The draft has: 'must as ·a rule' -Ed. 
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and x exactly like the factor (x 1 - x) with the single exception 
when f(x) is an original function to the first power: 

y,-y L.y 
f'(x) = --or - . 

X1- X 6x 

We now substitute into f'(x) 

X 1 =X SO that X 1 - X = 0 , 

and thus obtain: 

f'(x) 
0 dy 

-- or -
0 dx 

and finally 

f'(x)dx = dy or dy = f'(x)dx . 

The differential of y is therefore the conclusion of an algeb
raic development; it becomes the starting point for differential 
calculus operating on its own ground. dy, the differential26 of y 
-considered in isolation, that is, without its [real] equivalent 
-here immediately plays the same role as L.y in the algebraic 
method; and the differential of x, dx, ·the same role as 6x does 
there. 

If we had, in 

L.y = f'(x) 
L.x 

cleared the denominator, then 

I) L.y = f'(x) 6x . 
On the other hand, beginning with the differential calculus as 

a separate, complete type of calculating - and this point of 
departure has been itself derived algebraically - we start 
immediately with the differential expression of I), namely: 

II) dy = f'(x )dx . 

3) Since the symbolic differential equation (Gleichung des 
Differentials) arises simply by the algebraic handling of the 
most elementary functions with only one independent variable, 
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it appears that the inversion of the method (Umschlag in der 
Methode) could have been developed in a much more simple 
manner than happened with the example 

y =us. 

The most elementary functions are those of the first degree; 
they are: 

a) y = x, which leads to the differential coefficient t = I, so 

that the differential is dy = dx. 

b) y = x ± ab; it leads to the differential coefficient~~ = 1, so 

that again the differential is dy = dx. 

c)y =ax; it leads to the differential coefficient~ =a, so that 

the differential is dy = adx. 
Let us take the simplest case of all (under a)). Then: 

y =X' 

Yt = Xt ; 

Y 1- y or /:::,y = x 1 - x or & . 

I) Y1-y or 
Xt- X 

/:::,y zsx = 1. Thus also /:::,y = 

x1 is now set= x, or x1 - x = 0, and thus: 

0 dy 
II) 0 or dx = 1; so that dy = dx. 

f:::,y 
t::,x. In /:::,x 

Right at the start, as soon as we obtain I) ~ = 1, we are 

forced to operate further on the left-hand side, since on the 
right-haud side is the constant, l. And therein the inversion of 
the method, which throws the initiative from the right-haud side 
to the left-hand side, once and for all from the ground up proves 
to be in fact the first word of the algebraic method itself. 

Let's look at the matter more closely. 
The real result was: 

DIFFERENTIAL CALCULUS 

I) /:::,y = 1. 
/:::,x 

0 dy 
II) 0 or dx = 1 . 

29 

Since both I) aud II) lead to the same result we may choose 
between them. The setting of x 1 - x. = 0 appears in any case to 
be a superfluous and therefore an arbitrary operation. Further: 
we operate from here on in II) on the left-hand side, since on 
the right-hand side 'ain't no way', so that we obtain: 

o d 2y 
0 or dx• = 0. 

0 . 
The final conclusion would be that 0 = 0, so that the method 

is erroneous with which ~ was obtained. At the first use* it 

leads to nothing new, and at the second to exactly nothing.27 

Finally: we know from algebra that ifthe second sides of two 
equations are identical, so also must the first sides be. It there
fore follows that: 

dy- /:::,y 
dx - & · 

Since, however, both x audy, the variable dependent on x, are 
variable quantities, /:::,x while remaining a finite difference may 
be infinitely shortened; in other words it can approach 0 as 
closely as one wants, so that it becomes infinitely small; there
fore the /:::,y dependent on it does so as well. Further, since 

;7x = ~ it follows therefrom that ;7x really signifies, not the 

extravagant~ , but rather the Sunday dress (Sonntagsuniform) 

of ~, as soon as the latter functions as a ratio of infinitely 

small differences, hence differently from the usual difference 
calculation. 

For its part the differential dy = dx has no meaning, or more 

"'Original: 'coup', French for 'strike', 'blow'- Trans. 
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correctly only as much meaning as we have discovered for both 

differentials in the analysis of ~ . Were we to accept the 

interpretation just given,28 we could then perform miraculous 
operations with the differential, such as for example showing 
the role of adx in the determination of the subtangent of the 
parabola, which by no means requires that the nature of dx and 
dy really be understood. ' 

4) Before I proceed to section III, which sketches the his· 
torical path of development of the differential calculus on an 
extremely condensed scale, here is one more example of the 
algebraic method applied previously. In order graphically to 
distinguish it I will place the given function on the left-hand 
side, which will always be the side of the initiative, since we 
always write from left to right, so that the general equation is: 

xm + Pxm-1 + etc. + Tx + U = 0 , 

and not 
0 = xm + Pxm-1 + etc. + Tx + U. 

If the function y and the independent variable x are divided 
into two equations, of which the ftrSt expresses y as a function 
of the variable u, while on the other hand the second expresses 
u as a function of x , then both symbolic differential coefficients in 

combination are to be found. 29 Assuming: 

1) 3u2 = Y , 3uf = Y1 ' 

then 

2) x3 + ax2 = u ; xl + axi = u1 

We deal with equation 1) for the present: 

3ut- 3u2 = Y1- Y , 

3(uf- u•) = Y, - Y , 

3(u 1 - u) (u 1 + u) = Yt- Y , 

Yt- Y 
3(u 1 +u)=-- or 

Ut- U 

6y 

6u 
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On the left-hand side u1 is now set = u, so that u1 - u = 0, 
then: 

dy 
3(u + u) = du , 

3(2u) = dy 
du' 

6u = dy 
du · 

We now substitute for u its value x3 + ax2 , so that: 
dy 

3) 6(x3 + ax2
) = du . 

Now applying ourselves to equation 2): 

x~+ axi- x3 - ax2 = u1 - u, 

ext- x3 ) + a(x1- x2
) = u,- u ' 

(x 1 - x) (xi+ x1 x + x2 ) + a(x1 - x) (x1 + x) = u1 - u, 

u -tl 6u 
(xi+ x1x+ x2 ) + a(x 1 + x) = - 1

-- or A-. 
Xt-X ~ 

We set x 1 = x on the left-hand side, so that x1 - x = 0. 
Therefore 

(x 2 + xx + x2 ) + a(x + x) 

du 
4) 3x• + Zax = dx . 

du 
= dx. 

We now multiply equations 3) and 4) together, so that: 

d du dy 30 

5) 6(x3 + ax2
) (3x2 + Zax) = Ju . dx = dx. 

Thus, by algebraic means the operational formula 

dy dy du 
dx=du"dx' 
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has been found, which is also occasionally applicable to equ
ations with two independent variables. 

The above example shows that it is not witchcraft to trans
form a development demonstrated from given functions into a 
completely general form. Assume: 

l) y=f(u), Yt =f(u,), y,- y=f(u,)- f(u), 
so that therefore 

2)u=q>(x), u 1 =q>(x 1 ), u 1 -u=q>(x 1)-q>(x). 

From the difference under 1) comes: 

Yt- y f(u 1)- f(u) = ; 
u1 - u u1 - u 

however, since df(u) = j(u)du, 

consequently 

dy 
3) du = j(u). 

dy j(u)du 
du= du ; 

dy df(u) -=-
du du 

From the difference under 2) follows: 

u 1 - u = q>(x 1)- q>(x) 
x 1 - x x 1 - x 

and since dq>(x) = q>\x)dx , 

so that: 

du 
4) dx = q>\x) . 

du 
dx 

= q>'(x)dx 
dx 

du dq>(x) -=--
dx dx 

i 

L 
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We multiply equation 3) by 4), so that: 

dy du dy 31 , 
5) du. dx or dx = j(u) .q> (x) Q.E.D. 

N. III. The conclusion of this second instalment will follow, 
as soon as I consult John Landen at the Museum.32 
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As soon as we reach the differentiation off( u, z) [ = uz] , where 
the variables u and z are both functions of x, we obtain - in 
contrast to the earlier cases which had only one dependent 
variable, namely, y- differential expressions on both sides, as 
follows: 

in the first instance 

dy du dz 
-=z-+u-· 
dx dx dx'· 

in the second, reduced form 

dy = zdu + udz, 

which last also has a form different from that in one dependent 
variable, as for example, dy = maxm-1 dx, since here that 

immediately gives us the rx relieved of differential symbols 

f'(x) = maxm-1 , which is by no means the case in dy = 
zdu + udz. The equations with one dependent variable 
showed us once and for all how the derived functions of [func
tions in] x, in this case of xm, were obtained through actual 
differentiation [taking of differences] and their later can
cellation, and at the same time how there arose the symbolic 

equivalent % = rx for the derived function. The substi-

tution _()__ = 
0 

necessary, 

rx here appears 

. 0 . . 
s1nce O 1n 1 ts 

not only permissible but even 

primitive (waldurspriinglichen) 

37 
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form = any quantity, because ~ = X always leads to 

0 = 0. ~ appears here, however, equal to an exactly 

defmed . (ganz bestimmten) specific value, = mxm-1 
, and 

is itself the symbolic result of the operations whereby 
this value is derived from xm ; it is expressed as such 

a result in ~ . Thus ~ ( = ~ ) is established from its 

origin as the symbolic value or differential expression of 
the already derived f'(x), not, conversely, f'(x) obtained 

by means of the symbol~· 
At the same time, however, as soon as we have achieved this 

result and we therefore already operate on the ground (Boden) 
of differential calculus, we can reverse [the process]; if, for 
example, we have 

xm =f(x) =y 

to differentiate, we know immediately (von vornherein) 

dy = mxm-1dx 

or 

~ = mxm-1, 

Thus here we begin with the symbol; it no longer figures as 
the result of a derivation from the function [o~ x; rather instead 
as already a symbolic expression35 which indicates which oper
ations to perform uponf(x) in order to obtain the real value 

of~ , i.e. f'(x). In the first case %or ~ is obtained as the 

symbolic equivalent of f(x); and this is necessarily first, in 

order to reveal the origin of i, ; in the second case f( x) is 

obtained as the real value of the symbol ~ . But then, where 

the symbols j, , ~?, become the operational formulae 

(Operationsformeln) of differential calculus,'6 they may as such 
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formulae also appear on the right-hand side of the equation, as was 
already the case in the simplest example dy = f'(x )dx. If such an 
equation in its fmal form does not immediately give us, as in this 

case, ~ = f'(x), etc., then this is proof that it is an equation 

which simply expresses symbolically which operations are to be 
performed in application to defined (bestimmten) functions. 

And this is the case - and the simplest possible case -
immediately in d(uz), where u and z are both variables while 
both are also functions of the same third variable, i.e. of x. 37 

Given to be differentiatedf(x) ory. = uz, where u and z are 
both variables dependent on x. Then 

and 

Thus: 

or 

But 

Y1 = U1Z1 

Y1- Y = U1Z1- uz. 

Y1- Y = U1Z1 

x 1 - x x 1 - x 
uz 

X1- X 

.C.y u 1z 1 - uz 
.6.x x 1 - x 

u 1z 1 - uz = z 1 (u 1 - u) + u(z1 - z) , 

since this is equivalent to 

ZtUl- ZtU + UZt- UZ = ZtUt- UZ . 

Therefore: 

UtZt-UZ Ut-U Zt-Z 
= z 1 + u---

x1-x X 1 -x X 1 -X 
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If now on both sides x 1 - x becomes = 0, or x 1 = x, then we 
wouldhaveu1 - u = 0, so that u1 =u, andz 1 - z = 0, so that 
z 1 = z; we therefore obtain 

and therefore 

dy du ds 
- =z-+u
dx dx dx 

d(uz) or dy = zdu + uds . 

At this point one may note in this differentiation of uz -in 
distinction to our earlier cases, where we had only one dependent 
variable that here we immediately fmd differential symbols on 
both sides of the equation, namely: 

in the first instance 

in the second 

dy du dz' 
-=z-+u-· 
dx dx dx' 

d(uz) or dy = zdu + udz 

which also has a different form from that with one independent 
variable, such as for example, dy = f(x)dx; for here division by 

dx immediately gives us t = f(x)dx which contains the specific 

value (Spezialwert) free of symbolic coefficients, derived from 
any function of x, f(x): which is in no sense the case in 
dy = zdu+ udz. 

It has been shown how, in functions with only one independent 
variable, from one function of x, for example f(x) = xm, a 
second function of x,f(x), or, in the given case mxm-1 may be 
derived by means of actual differentiation and subsequent can
cellation alone, and at the same time how from this process the 

symbolic equivalent% = ;k for the derived function originates 

on the left-hand side of the equation. 

Further: the substitution ~ = ¥. here was not only permissible 

but mathematically necessary. Since ~in its own printitive form 

L 
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may have any magnitude at all, for~ = X always gives 0 = 0. 

Here, however, ~ appears as the symbolic equivalent of a 

completely defmed real value, as above, for example, mxm-t, 
and is itself only the result of the operations whereby this value 
was derived from xm ; as such a result it is firmly fixed 

ifestgehaltm) in the form t . 
Here, therefore, where ¥. ( = % ) is established in its origin, 

f(x) is by no means found by using the symbol 1;; rather 

instead the differential expression~ [appears] as the symbolic 

equivalent of the already derived function of x. 

Once we have obtained this result, however, we can proceed 
in reverse. Given an f(x), e.g. xm, to differentiate, we then 
first look for the value of dy and find dy = mxm-1 dx, so that 

~ = mxm-1
• Here the symbolic expression appears (figuriert) 

as the point of departure. [We] are thus (so) already operating 

on the ground of differential calculus; that is, ~ etc. already 

perform as formulae which indicate which known differential 
operations to apply to the function of x. In the first case 

t ( = ~ ) was obtained as the symbolic equivalent of f(x), 

in the second f(x) was sought and obtained as the real 

value of the symbols ;k , :-; , etc. 

These symbols having already served as operational formulae 
(Operationsformeln) of differential calculus, they may then also 
appear on the right-hand side of the equation, as already hap
pened in the simplest case, dy = f'(x)dx. If such an equation in 
its final form is not immediately reducible, as in the case 

mentioned, to ;k = f'(x), that is to a real value, then that is 

proof that it is an equation which merely expresses symbolically 
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which operations to use as soon as defined functions are treated 
in place of their undefined [symbols]. 

The simplestcasewherethis comes in is d(uz), where u and 
z are both variables, but both at the same time are functions of 
the same 3rd variable, e.g. of x. 

If we have here obtained by means of the process of dif
ferentiation (Differenzierungsprozess) (see the beginning of this 
in Book I, repeated on p.lO of this book*) 

dy du dz 
-=x-+u-
dx dx dx' 

then we should not forget that u and z are here both variables, 
dependent on X, SOy is only dependent on X, beCaUSe on U and 
z . Where with one dependent variable we had it on the symbolic 
side, we now have the two variables u and z on the right-hand 
side, both independent with respect toy but both dependent on 
x, and their character [as] variables dependent on x app-

ears in their respective symbolic coefficients ~ and ;! . If 

we deal with dependent variables on the right-hand side, then 
we must necessarily also deal with the differential coefficients 
on that side. 

From the equation 

it follows: 

dy du dz 
- =z-+u
dx dx dx 

d(uz) or dy = zdu + udz. 

This equation only indicates, however, the operations to per
form when (sobald) u and z are given as defined functions. 

The simplest possible case would be, for example, 

u =ax , z = bx. 

* See p.39 of this volume. 
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Then 

d(uz) or dy = bx .adx +ax .bdx . 

We divide both sides by dx, so that: 

dy 
- = abx + bax = 2abx dx 

and 
d2y 
- =ab+ ba = 2ab 
dx2 

43 

If we take, however, the product from the very beginning, 

y or uz = ax . bx = abx2, 
then 

uz or y = abx2 , dy = Zabx , 
dx 

d2y 
dx2 = 2ab 

As soon as we obtain a formula such as, for example, 

[w =] z : , it is clear that the equation, 'what we might 

call'* a general operational equation, [is] a symbolic expression 
of the differential operation to be performed. If for exam-

ple we take [the] expression y ~ , where y is the ordinate 

and x the abscissa, then this is the general symbolic expression 
for the subtangent of an arbitrary curve (exactly as 
d(uz) = zdu + udz is the same for the differentiation of the 
product of two variables which themselves depend on a third). 
So long, however, as we leave the expression as it is it leads to 
nothing further, although we have the meaningful rep
resentation for dx, that it is the differential of the abscissa, and 
for dy, that it is the differential of the ordinate. 

In order to obtain any positive result we must first take the 
equation of a definite curve, which gives us a definite value for 
y in x and therefore for dx as well, such as, for example, 

* In English in original text- Trans. 
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y 2 = ax, the equation of the usual parabola; and then by 
means of differentiation we obtain 2ydy = adx; hence 

dx = Zy~y . If we substitute this definite value for dx 

into the general formula for the subtangent, y ~ , we then 

obtain 

2ydy 
y-

a = y . 2ydy = 2y2 

dy ady a 

and since y 2 = ax , [this] 

=2ax=2x, 
a 

which is the value of the subtangent of the usual parabola; that 
is, it is = 2 x the abscissa. If, however, we call the subtang-

ent 't, so that the general equation runs y ;; = 't, and 

ydx = 't dy. From the standpoint of the differential calculus, 
therefore, the question is usually (with the exception of 

Lagrange) posed thus: to find the real value for Z . 
The difficulty becomes evident if we then substitute the 

· .• 
1

, O,dy 
ongma torm 0 tOr dx etc. 

appears as 

dy du dz 
-=z-+u
dx dx dx 

0 0 0 
o=z.o+u.o, 

an equation which is correct but leads nowhere (zu nichts), all 

the less so, since the three %' s come from different differ

ential coefficients whose different derivations are no longer 
visible. But consider: 

L 
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1) Even• in the first exposition with one independent var
iable, we first obtain 

0 dy = f'(x) - or d 0 X 
so that dy = f'(x)dx . 

But since 

dy- 0 
dx- 0' dy = 0 and dx = 0, so that 0 = 0 . 

Although we again substitute for ~ its indefinite expression 

~ we nonetheless commit here a positive mistake, for % 
is only found here as the symbolic equivalent of the real 

value f'(x), and as such is fixed in the expression Z , and 

thus in dy = ftx)dx as well. 

2) u,- u becomes ddu or ~0 , because the variable x 
X1- X X 

becomes = x 1 , or x 1 - x = 0; we thus obtain right away not 

0 but rather -
0
° for "'-" ; we know however in general that 

x1- x 

~ can have any value, and that in a specific case it has 

the specific value (Spezialwert) which appears as soon as a 
defined function of x enters for u ; we are thus not only cor-

. b .. due 0 b th d .. rect m su stitutmg dx tor 0 , ut ra er we must o It, smce 

~: as well as ~ appear here only as symbols for the differ

ential operations to be performed. So long as we stop with the 
result 

so that 

dy du dz 
-=z-+u-
dx dx dx' 

dy = zdu + udz , 
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then ~= , : , du and dz also remain indefinite values, just 

like ~ capable of any value. 

3) In the usual algebra ~ can appear as the form for 

expressions which have a real value, even though ~ can be a 
xz- a2 

symbol for any quantity. For example, given--, we set x- a 

x =a so that x- a= 0 and x2 = a2 , and therefore x2- a
2 = 

0. We thus obtain 

x 2 - a2 

x- a 
0 

= 0; 

the result so far is correct; but since ~ may have any value it 
x2- az 

in no way proves that -- has no real value. 
x- a 

If we resolve x 2 - a2 into its factors, then it = 

(x + a) (x- a) ; so that 

x2 - a2 x- a = (x +a) .-- = x + a ; 
x- a x- a 

so if x- a = 0, then x =a, so therefore x + a =a+ a = 2a. 38 

If we had the term P(x- a) in an ordinary algebraic 
equation, then if x = a, so that x- a = 0, then necessarily 
P(x- a) = P.O = 0; just as under the same assumptions 
P(x 2 - a2 ) = 0. The decomposition of x 2 - a2 into its factors 
(x + a) (x- a) would change none of this, for 

P(x+ a) (x- a)= P(x+ a) .0 = 0. 

By no means, however, does it therefore follow that if the 

term P. ( ~) had been developed by setting x = a, its value 

must necessarily be = 0. 
% may have any value because % = X always leads to: 

0 = X . 0 = 0; but just because ~ may have any value it 

l 
.!... 
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need not necessarily have the value 0, and if we are acquainted 
with its origin we are also able to discover a real value hidden 
behind it. 

So for example P. x•-a•, if x =a, x- a= 0 and so 
x- a 

as well x2 = a2 , x2 - a2 = 0; thus 

x 2 - a2 0 
P. =P.-

0
. 

x- a 

Although we have obtained this result in a mathematically 
completely correct manner, it would nonetheless be mathemat
ically false, however, to conclude without further ado that 

P . % = 0 , because such an assumption would imply that 

~ may necessarily have no value other than 0, so that 

0 
P. 0 =P.O. 

It would be more relevant to investigate whether any other 
result arises from resolving x2 - a• into its factors, 
(x +a) (x- a); in fact, this transforms the expression to 

x- a 
P .(x+ a).--= P .(x+ a).l, 

x- a 

and [when] x = a toP .2a or 2Pa. Therefore, as soon as 
we operate (rechnen) with variables,"• it is all the more not 
only legitimate but indeed advisable to fix firmly ifest-

zuhalten) the origin of% by the use of the differential symbols 

~ , ~ , etc., after we have previously (urspriinglich) proved 

that they originate as the symbolic equivalent of derived func
tions of the variables which have run through a definite process 
of differentiation. If they are thus originally (urspriinglich) the 
result of such a process of differentiation, then they may for that 
reason well become inversely (umgekehrt) symbols of a process 
yet to be performed on the variables, thus operational symbols 
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( Operationssymbolen) which appear as points of departure rather 
than results, and this is their essential use(Dienst) in differential 
calculus. As such operational symbols they may even convey 
the contents of the equations among the different variables (in 
implicit functions 0 stands from the very beginning on the 
right-hand side [of the equation] and the dependent as well as 
independent variables, together with their coefficients, on the 
left). · 

Thus it is in the equation which we obtain: 

d(uz) 
dx 

dy zdu udz 
or - = -+-. 

dx dx dx 

From what has been said earlier it may be observed that the 
dependent functions of x, z and u, here appear unchanged as z 
and u again; but each of them is equipped (ausgestattet) with the 
factor of the symbolic differential coefficient of the other. 

The equation therefore only has the value of a general equ
ation which indicates by means of symbols which operations to 
perform as soon as u and z are given respectively, as dependent 
variables, two defined functions of x. 

Only when [we] have defmed functions of [x] for u and z 

may ~( = ~)and :!:( = ij) and therefore ~( = ij) as well 

become 0, so that the value ~ = 0 cannot be presumed 

but on the contrary must have arisen from the defined func
tional equation itself. 

Let, for example, u = x3 + ax2 
; then 

(Q) = du = 3x 2 + 2ax 
0 dx ' 
0 d2 u 

(o), = dx' = 6x + 2a ' 

0 d3u 
(o)2 = dx' = 

6 ' 
0 d4u 

(o), = dx• = 0 ' 
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so that in this case ~ = 0. 

The long and the short of the story is that here by means of 
differentiation itself we obtain the differential coefficients in 

their symbolic form as a result, as the. value of [:; in] the 

differential equation, namely in the equation 

d(uz) dy du dz 
~or dx=zdx+"dx" 

We now know, however, that u = a defmed function of x, 

say f(x). Therefore u,- u, in its differential symbol ~ , 
X't-X UA 

is equal to f(x), the first derived function of f(x). Just so 

z = <p(x), say, and so similarly ~ = <p'(x), ditto - of 

<p( x) . The original function itself, however, provides us neither 
with u nor with z in any defmed function of x, such as, for 
example 

u = xm, z = ,jx 

It provides us u and z only as general expressions for any 2 
arbitrary functions of x whose product is to be differentiated. 

The equation states that, if a product, represented by uz, of 
any two functions of x is to be .differentiated, one is first to fmd 
the real value corresponding to the symbolic differential 

coefficient ~ , that is the first derived function say of f(x), 

and to multiply this value by <p(x) = z; then similarly to fmd 

the real value of:!: and multiply [it] by f(x) = u; and fmally 

to add the two products thus obtained. The operations of 
differential calculus are here already assumed to be well
known. 

The equation is thus only a symbolic indication of the oper
ations to be performed, and at the same time the symbolic 

differential coefficients ~: , :!: here stand for symbols of 
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differential operations still to be completed in any concrete 
case, while they themselves were originally derived as symbolic 
formulae for already completed differential operations. 

As soon as they have taken on (angenommen) this character, 
they may themselves become the contents of differential equ
ation, as, for example, in Tayk!r's Theorem: 

Yt=y+~h+etc. 

But then these are also only general, symbolic operational 
equations. In this case of the differentiation of uz, the interest 
lies in the fact that it is the simplest case in which - in 
distinction to the development of those cases where the inde
pendent variable x has only one dependent variable y - diffe
rential symbols due to the application of the original method 
itself are placed as well on the right-hand side of the equation 
(its developed expression), so that at the same time they enter as 
operational symbols and as such became the contents of the 
equation itself. 

This role, in which they indicate operations to be performed 
and therefore serve as the point of departUre, is their charac
teristic role in a differential calculus already operating (sich 
bewegenden) on its own ground, but it is certain (sicher) that no 
mathematician has taken account of this inversion, this reversal 
of roles, still less has it been necessary to demonstrate it using a 
totally elementary differential equation. It has only been men
tioned as a matter of fact that, while the discoverers of the 
differential calculus and the major part of their followers make 
the differential symbol the point of departure for calculus, 
Lagrange in reverse makes the algebraic derivation•• of actual 
(wirklichen) functions of the independent variable the point of 
departure, and the differential symbols into merely symbolic 
expressions of already derived functions. 

If we once more return to d( uz), we obtained next as the 
result (Produkt) of setting x1 - x = 0, as the result of the 
differential operation itself: 

-
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dy du dz 
-=z-+u-
dx. dx dx · 

Since there is a common denominator here, we thus obtain as 
a reduced expression 

dy = zdu + udz. 

This compares to (entspricht) the fact that in the case of only one 
dependent variable we obtain as the symbolic expression of the 
derived function of x, off'(x) (forinstance, of maxm-1 , which is 

f'(x) if axm = f(x)), ~on the left-hand side as its symbolic 

expression 

dy 
- = f'(x) 
dx 

and of which the first result is 

dy = f'(x)dx 

(for example 4Y = maxm-1 • d., = maxm-1 dx which is the 
'dx ''J ' 

differential of the function y) (which last we may equally 

re-transform to t = maxm-1 
)· But the case 

dy = zdu+ udz 

is distinguished once again by reason of the fact that the diffe
rentials du, dz here lie on the right-hand side, as operational 
symbols, and that dy is only defmed after the completion of the 
operations which they indicate. If 

u = f(x) , z = <p(x) 

then we know that we obtain for du 

du = f'(x)dx 

and for [dz] 

dz = cp'(x)dx 
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Therefore: 

dy = Cjl(x)f'(x) dx + f(x) Cjl'(x) dx 

and 

ix = CjJ(x)f'(x) + f(x) Cjl'(x) . 

In the first case therefore first the differential coefficient 

dy = /Zx) 
dx 

is found and then the differential 

dy = f'(x)dx. 

In the second case first the differential dy and then the 

differential coefficient ~ . In the first case, where the diffe

rential symbols themselves first originate from the operations 
performed with f(x), first the derived function, the true 

(wirkliche) differential coefficient, must be found, to which ;7, 
stands opposite (gegenubertrete) as its symbolic expression; and 
only after it has been found can the differential (das Differential) 
dy = f'(x)dx be derived. 

It is turned round (umgekehrt) in dy = zdu + udz. 
Since du, dz appear here as operational symbols and clearly 

indicate operations which we already know, from differential 
calculus, how to carry out, therefore we must first, in order to 

find the real value of ~~ , in every concrete case substitute for 

u its value in x, and for z ditto- its value in x- in order to find 

dy = CjJ(x)f'(x)dx+ f(x)CjJ'(x)dx; 

and then for the first time division by dx provides the real value 
of 

dy 
dx 

CfJ(x)f'(x) + f(x) Cjl'(x) . 

I 

l_ 
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Wha . fi du dz dy d2 y . 
t IS true or dx , dx , dx , dx' etc. IS true for all com-

plicated formulae where differential symbols themselves appear 
within general symbolic operational equations. 
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SECOND DRAFT41 

[I] 

We start with the algebraic derivation of f(x), in order to 
establish in this way at the same time its symbolic 

differential expressions ~ or ;t , and thus also discover its 

meaning. We must then turn it round, starting with the sym-

b 1. d'"' "al ffi . du dz • " . o 1c 111erent1 coe IClents dx , dx as g1ven 1orms m 

order to fmd their respective corresponding real equivalents 
f(x), <p'(x). And indeed, these different ways of treating the 
differential calculus, setting out from opposite poles- and two 
different historical schools- here do not arise from changes in 
our subjective methods, but from the nature ofthefunction uz 
to be dealt with. We deal with it, as with functions of x with a 
single dependent variable, by starting with the right-hand 
pole and operating algebraically with it. I do not believe any 
mathematician has proved or rather even noticed this necessary 
reversal from the first method of algebraic derivation (his
torically the second) whether for so elementary a function as uz 
or any other. They were too absorbed with the material of the 
calculus for this. 

Indeed, we fmd that in the equation 

0 dy du dz 
0 or dx=zdx+udx 

~ again springs in just the same way from the derivative 

occurring on the right, with uz just as with functions of x with a 

54 
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single dependent variable; but on the other hand the dif

ferential symbols ~ ': are again incorporated in f(x) or the 

first derivative of uz, and therefore form elements of the equi

valent of~-
The symbolic differential coefficients thus themselves 

become already the object or content of the differential oper
ation, instead of as before featuring as its purely symbolic result 
(als symbolisches Resultat derselben). 

With these two points, first, that the symbolic differential 
coefficients as well as the variables become substantial elements 
of the derivation, become objects of differential operations 
(Differentialoperationen), second, that the question has changed 
about, from fmding the symbolic expression for the real diffe
rential coefficient f(x), to finding the real differential coef
ficient for its symbolic expression- with bo~ these points the 
third is given, that instead of appearing as the symbolic result of 
the previous operation of differentiation on the real function of 
x, the symbolic differential expressions now conversely 
(umgekehrt) play the role of symbols which indicate operations 
of differentiation yet to be performed on the real function of x; 
that they thus become operational symbols. 

In our case, where 

dy du dz 
-=z-+u-
dx dx dx' 

we would no longer be able to operate unless we knew not only 
that z and u are both functions of x but also that, just as with 

y = xm, 

real values in x are given for u and z, such as, for example, 

u =/X, z = x 3 + 2ax2 • 

In that manner, then, ~, ~in fact stand as indicators of 

operations whose performance (Ausfiihrungsweise) is assumed 

.t. 
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to be well-known for any arbitrary function of x substituted in 
place of u and 11. 

c) The equation found is not only a symbolic operational 
equation (Operationsgleichung), but also simply a preparatory 
symbolic operational equation. 

Since in 

[I)] 
dy du dz 
- =11-+u-
dx dx dx' 

the denominator dx is found in all terms on both sides, its 
reduced expression is thus: 

II) dy or d(uz) = 11du + udz. 

Straight away this equation says that when a product of two 
arbitrary variables (and this is generalisable in further appli
cations to the product of an arbitrary number of variables) is to 
be differentiated, each of the two factors is to be multiplied by 
the differential of the other factor and the two products so 
obtained are to be added. 

The first operational equation 

dy du i111 
-=11-+u
dx dx dx 

thus becomes, if the product of two arbitrary variables is to be 
differentiated, a superfluous preparatory equation which, after 
it has served its purpose, namely that of a general symbolic 
operational formula, leads directly to the goal. 

And here it may be remarked that the process of the original 
algebraic derivation is again turned into its opposite. We first 
obtained there 

/::,.y = y,- y 

as the corresponding symbol for /(x 1)- f(x), both usual 
algebraic expressions (since f(x) and f(x 1 ) have been given 
as defined algebraic functions of x). Then f(x,)- f(x) was 

x 1 - x 

replaced by ~ , whereupon f'(x) -the first derived function 
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off( x) - became ;t, and we at last obtained, from the final 

equation of the differential coefficient, 

dy = f(x) 
dx ' 

the differential 

dy = f(x)dx. 

The above equation,* however, gives us the differentials 
dy, du, dz as points of departure (Ausgangspunkre ). Thus, were 
in fact arbitrary defmed functions of x to be substituted for u 
and 11, designated only as 

u = f(x) and 11 = <p(X) , 

then we would have 

dy = <p(x)df(x) + f(x)d<p(x) , 

and this d sign merely indicates differentiation to be per
formed. 

The result of this differentiation has the general form: 

df(x) = f(x)dx 

and 

d<p(x) = <p'(x)dx . 

So that 

dy = <p(x)f'(x)dx + f(x)<p'(x)dx. 

Finally, 

~ = <p(x)f\x) + f(x)<p'(x). 
dx 

Here, where the differential already plays the role of a 
ready-made operational symbol, we therefore derive the diffe
rential coefficient from it; while on the contrary in the original 

"' Equation II) - Trans. 
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algebraic development the differential was derived from the 
equation for the differential coefficient. 

Let us take the differential itself, as we have developed itin its 
simplest form, namely, from the function of the first degree: 

y =ax, 
dy -=a. 
dx ' 

of which the differential is 

dy=adx. 

The equation of this differential appears to be much more 
meaningful than that of the differential coefficient, 

0 dy 
-or- =a 
0 dx ' 

from which it is derived. 
Since dy = 0 and dx = 0, dy = adx is identical to 0 = 0. Yet, 

we are completely correct to use dy and dx for the vanished
but fixed, by means of these symbols, in their disappearance
differences, y 1 - y and x1 - x. 

As long as we stay with the expression 

dy = adx 

or, in general, 

dy = f(x)dx , 

it is nothing other than a restatement of the fact that 

dy = f(x) 
dx ' 

which in the above case, = a, from which we may continue to 
transform it further. But this ability to be transformed already 
makes it an operational symbol (Operationssymbole ). At once, 
we see that if we have found dy = f(x) dx as a result of the 
process of differentiation, we have only to divide both sides by 

dx to find ¥x = f'(x), namely, the differential coefficient. 
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Thus for example in y 2 = ax 

d(y 2 ) = d(ax) , 
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2ydy = adx. 

The last equation of differentials provides us with two equ
ations of differential coefficients, namely: 

dy a 
dx = 2y and 

dx 2y 
-=-
dy a 

But 2ydy = adx also provides us immediately with the 

value Zydy for dx , which for instance substitutes into the 
.a 

general formula for the subtangent y ~~ and fmally helps to 

establish 2x, double the abscissa, as the value of the subtangent 
of the usual parabola. 

II 

We now want to take an example in which these symbolic 
expressions first serve the calculus as ready-made (jertige) oper
ational formulae, so that the real value of the symbolic coef
ficient is also found and then the reversed elementary algebraic 
exposition may be followed. 

1) The dependent functiony and the independent variable x 
are not united in a single equation, but in such a manner that y 
appears in a first equation as a direct function of the variable u, 
and then u in a second equation as a direct function of the 
variable x. The task: to find the real value of the symbolic diffe-

rential coefficient, ¥x . 
Let 

a) y = f(u) , b) u = <p(x) . 

Next, 1) y = f(u) gives: 

dy = df(u) = f(u)du = f'(u) 
du du du 
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2) du = d<p(x) = <p'(x)dx = <p'(x) 
dx dx dx 

So that 

dy du 
du · dx = f'Cu) · <p'(x) 

But 

dy du dy 
du·ax=ax· 

So that 

ix = ftu)<p'(x) . 

Example. If a) y = 3u2 , b) u = x3 + ax 2 , then, by the 
formula 

dy = d(3u2) = 6u (= f'(u)); 
du du 

but the equation b) says u = x3 + ax2 • If we substitute this 
value for u in 6u, then 

dy = 6(x3 + ax 2) ( =f'(u)) · 
du 

Furthermore: 

So that 

dy du 
du · dx 

du = 3x2 + 2ax ( =<ptx)) . 
dx 

or dy = 6(x 3 + ax 2) (3x 2 + 2ax) (=f'(u) .<p'(x)) 
dx 

2) We now take the equations contained in the last example 
as the starting equations (Ausgangsgleichungen), in order to 
develop them this time in the first, algebraic, method. 

I 

I 
I ...... 
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a) y = 3u2 , 

Since y = 3u2 , 

b) u = x 3 + ax2 • 

[then] y 1 =3ui , and 

Yt- Y = 3(u1- u2 ) = 3(u 1 - u) (u, + u) 

Therefore 
y,- y 
-- = 3(u 1 + u) . 
u,- u 
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Ifnowu 1 - u becomes= O,thenu 1 = u,and3(u 1 + u) is 
thus transformed to 3(u + u) = 6u. 

We substitute for u its value in equation b), so that 

djJ = 6(x3 + ax2) 
du 

Further; since 

u = x 3 + ax2 
, [then] u, = xi+ axi 

so that 

u,- u =(xi+ ax})- (x 3 + ax2) =(xi- x 3 ) + a(xi- x 2 ) , 

u,- u = (x 1 - x) (xi+ x 1 x + x 2) + a(x 1 - x) (x
1 

+ x) 

thus 
u 1 - u 
--=(xi+ x 1 x + x 2) + a(x 1 + x) 
X1- X 

If now x 1 - x becomes = 0 then x 1 = x, so that 

xi+ x 1 x+ x 2 = 3x2 

and 

a(x 1 + x) = 2ax . 

Thus: 
du 
dx = 3x2 + 2ax . 

If we now multiply both equations together, we then obtain 
on the right-hand side 
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6(x3 + ax2 ) (3x2 + 2ax) , 

which corresponds to the left-hand side 

dy du_dy 
du"dx-dx' 

just as previously. 
In order to bring out the difference in the derivations more 

clearly, we shall place the defmed functions of the variables on 
the left-hand side and the functions dependent on them on the 
right-hand side, since one is accustomed, following the general 
equations in which only 0 stands on the right hand, to thinking 
that the initiative is on the left-hand side. Thus: 

a) 3u• = Y ; 

Since 

so that 

or 

so that 

b)x3 + ax 2 = u. 

3u2 = Y ' 3u'l. = Yt , 

3(u'l_- u2 ) = y,- Y 

3(u 1 - u) (u1 + u) = Yt- Y , 

3(u
1 

+ u) = Yt- y 
U1- u 

If now u 1 becomes= u, sothatu 1 - u = 0, [we] then obtain 

3(u + u) or 6u = :iu . 
If we substitute in 6u its value from equation b), then 

6(x' + ax•) = dy 
du · 

~ 
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Furthermore, if 

x3 + ax2 = u, 

then 

x'l+ ax'l. = U1 

and 

xi_+ axi- x 3 - ax2 = u1 - u; 

so that 

(xi- x3) + a(x'l.- x 2 ) = u 1 - u . 

We further separate into factors: 

(x1 - x) (x'l. + x 1 x + x 2 ) + a(x 1 - x) (x 1 + x) = u 1 - u. 

Therefore 

u 1 - u 
(x'l. + x 1x+ x2 ) + a(x 1 + x) = --; 

x 1 - x 

now if x1 = x, so that x 1 - x = 0, then 

du 
3x2 + 2ax = dx . 

If we multiply the 2 derived functions together, then 

dy 
6(x3 + ax2 ) (3x2 + 2ax) =-

dx' 

and if we put it in the usual order, 

dy du dy 
- . - =- = 6(x3 + ax2 ) (3x2 + 2ax) 
du dx dx 
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It is self-evident that due to its details and the frequently 
difficult division of the first difference, f(x,)- f(x), into 
terms which each contain the factor x 1 - x , the latter method is 
not comparable to the historically older one as a means of 
calculation. 
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On the other hand one begins this last method with dy , dx 

and ~ as given operational formulae, while one sees them 

arise in the ftrst one, and in a purely algebraic manner as well. 
And I maintain nothing more. And there in the [historically] 
fust method, how has the point of departure of the differential 
symbols as operational formulae been obtained? Either through 
covertly or through overtly metaphysical assumptions, which 
themselves lead once more to metaphysical, unmathematical 
consequences, and so it is at that point that the violent sup
pression is made certain, the derivation is made to start its way, 
and indeed quantities made to proceed from themselves. 

And now, in order to give an historical example of beginning 
from the two opposing poles, I will compare the solution of the 
case of d(uz) developed above by Newton and Leibnitz on the 
one hand, to that by Lagrange on the other hand. 

1) Newton. 
We are ftrst told that when the variable quantities increase x, 

y etc. designate the velocities of their fluxions, alias of the 
increase, respectively, of x, y etc. Since furthermore the num
erical sizes of all possible quantities may be represented by 
means of straight lines, the momenta or infinitely small quanta 
which are produced are equal to the product of the velocities x , 
y etc. with the infinitely small time intervals 1: duriug which 
they occur, thus = ti1: , x1: and j't . 42 

'TIDRD DRAFT' 

If we now consider the differential of yin its general form, dy 
= ftx)dx, then we already have before us a purely symbolic 
operational equation, even in the case where f'( x) from the very 
beginning is a constant, as indy = d(ax) = adx. This child of 

~ or ~ = ftx) looks suspiciously like its mother. 

For in~= ~numerator and denominator are inseparably bound 

together; indy= ftx)dx they are obviously separated, so that 
one is forced to the conclusion: dy = f'(x )dx is only a masked 
expression for 0 = f'(x) . 0, thus 0 = 0 with which 'nothing's to 
be done' ('nichts zu wolle'). Looking more closely, analysts in 
our century, such as, for example, the Frenchman Boucharlat, 
smell a rat here too. He says:* 

In ';t = 3x
2

, for example, * alias Z , or even more its 

value 3x2
, is the differential coefficient of the function y. Since 

Z is thus the symbol which represents the limit 3x2 , dx 

must always stand under dy but, in order to facilitate algebraic 

operation we treat Z as an ordinary fraction and :J: = 3x2 

as an ordinary equation, and thus by removing the denominator 
dx from the equation obtain the result dy = 3x 2 dx, which 
expression is called the differential of y. '43 

In order to 'facilitate algebraic operation', we thus introduce 
a false formula. 

* This is a translation of Marx's German translation of a passage originally in 
French- Trans. 
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In fact the thing (Sache) doesn't behave that wa¥· In % 

(usuall¥ written (%)l, the ratio of the minimal expression 

(M inimalausdrucks) of y 1 - y , or of f( x 1 ) - f( x) , or of the 
increment of f(x), to the minimal expression of x 1 - x, or to 
the increment of the independent variable quanticy x, pos
sesses a form in which the numerator is inseparable from the 

denominator. But wh¥? In order to retain ~ as the ratio of 

vanished differences. As soon, however, as x 1 - x = 0 obtains 
in dx a form which manifests it as the vanished difference of x , 
and thus y 1 - y = 0 appears as dy as well, the separation of 
numerator and denominator becomes a completely permissible 
operation. Where dx now stands its relationship with dy 
remains undisturbed by this change of position. dy = df(x), 
and thus = f'(x)dx, is only another expression for 

:t [ = ft X) J , which must lead to the conclusion that f'( X) 

is obtained independently. How useful this formula dy = df(x) 
immediately becomes as an operational formula (Operations/or
mel), however, is shown, for example, by: 

y 2 =ax , 

d(y2 ) = d(ax) , 

2ydy = adx; 

so that 

dx = 2ydy 
a 

This value of dx, substituted into the general formula for the 

b dx h . su tangent, y -d , t en gives 
)' 

2ydy 
y

a 
dy 

- 2y2dy = 
- ady 

2y2 

a 

,., 
!' 
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i.• 
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and since 
. 2ax 

y 2 =ax, [thus] =a= 2x; 

so that 2x , double the abscissa, is the value of the subtangent of 
the usual parabola. 

However, if dy = df( x) serves as the first point of departure 

(Ausgangspunkt), which only later is developed into 7x itself, 

then, for this differential of y to have any meaning at all, these 
differentials dy, dx must be assumed to be symbols with a 
defined meaning. Had such assumptions not originated from 
mathematical metaphysics but instead been derived quite 
directly from a function of the first degree, such as y = ax, 

then, as seen earlier, this leads toy,- Y = a, which is trans-
x1- x 

formed to 7x = a. From here as well, however, nothing cer-

tain is to be got a priori. For since ~ is just as much = a 

as 7x = a, and the. 6.x, t:.y, although finite differences 

or increments, are yet fmite differences or increments of unli
mited capacity to contract (Kontraktionsfiihigkeit), one then may 
just as well represent dx, dy as inflnitefy small quantities 
capable of arbitrarily approaching 0, as if they originate from 
actually setting the equality x 1 - x = 0, and thus as well 
Y1- y = 0. The result remains identical on the right-hand side 
in both cases, because there in itself there is no x 1 at all to set = 
x, and thus as well no x 1 - x = 0. This substitution = 0 on the 
other side consequently appears just as arbitrary an hypothesis 
as the assumption that dx , dy are arbitrarily small quantities. 
Under (sub) IV) I will briefly indicate the historical develop
ment through the example of d(uz), but yet prior to that will 
give an example under (sub) III) 44 which is treated the first time 
on the ground of symbolic calculus, with a ready-made oper
ational formula (fertigen Operationsformel), and is demonstrated 
a second time algebraically. Enough (soviet) has been shown 
under (sub) II), so that the latter method alone, by means of its 
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application to so elementary a function as the product of two 
variables, using its own results, necessarily leads to starting 
points (die Ausgangspunkte) which are the opposite pole as far as 
operating method goes. 

To (ad) IV. 
Finally (following Lagrange) it is to be noted that the limit or 

the limit value, which is already occasionally found in Newton 
for the differential coefficients and which he still derives from 
purely geometric considerations (Vorstellungen), still to this day 
always plays a predominant role, whether the symbolic expre
sions appear (jigurieren) as the limit off(x) or conversely f(x) 
appears as the limit of the symbol or the two appear together as 
limits. This category, which Lacroix in particular analytically 
broadened, only becomes important as a substitute for the · 
category 'minimal expression', whether it is of the derivative as 

opposed to the 'preliminary derivative', or of the ratio y,- Y, 
x1- x 

when the application of calculus to curves is treated. It is more 
representable (vorstellbarer) geometrically and is already found 
therefore among the old geometricians. Some contemporaries 
(Modernen) still hide behind the statement that the differentials 
and differential coefficients merely express very approximate 
values.45 

I 
l 
l 

'1 
-4 

!#' 

-~ t 
.-~ 

SOME SUPPLEMENTS46 

A) Supplement on the differentiation of uz. 47 

I) For me the essential thing in the last manuscript on the 
development of d(uz) was the proof, referring to the equation 

dy du dz 
A)- =z-+ u-, 

dx dx dx 

that the algebraic method applied here reverses itself into the 
differential method, since it develops within the derivative, and 
thus on the right-hand side, symbolic differential coefficients 
without corresponding equivalents, real coefficients; hence 
these symbols as such become independent starting points and 
ready-made operational formulae. 

The form of equation A) lends itself all the more readily to 

thi . 'all . b thdudz s purpose smce It ows a comparison etween e dx, dx' 

produced within the derivative f(x), and the !• which 

is the symbolic differential coefficient of f(x) and therefore 
comprises its symbolic equivalent, standing opposite on the 
left-hand side. 

Confronting the character of~,~, as operational formulae, 

I have been content with the hint that for any symbolic diffe
rential coefficient an arbitrary 'derivative' may be found as its 
real value if one substitutes some f(x), 3x 2 for example, for u 
and some <p(x) , x3 + ax 2 for example, for z. 

I however could also have indicated the geometric applica
bility of each operational formula, since for example, the gen-

eral formula for the sub tangent of a curve = y ~, which has a 
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70 MATHEMATICAL MANUSCRIPTS 

form generally identical to z~, u:, for they are all 

products of a variable and a symbolic differential coefficient. 
Finally, it could have been noted that y = uz [is] the simplest 

elementary }Unction (y here = y 1 , and uz is the simplest form of 
the second power) with which our theme could have been 
developed. 

48 
A) Differentiation of I!_. 

z 

3) Since d ". is the inverse of d(uz), where one has mul
z 

tiplication, the other division, one may use the algebraically 
obtained operational formula 

d(uz) = zdu + udz 

in order to fmd d"'- directly. I will now do this, in order that 
z 

the difference between the method of derivation and the simple 
application of a differential result found previously which now in 
turn serves ~s an operational formula, may stand out clearly. 

Since y = ~ , thus 
z 

u 
a) y = z' 
b) u = yz. 

u 
yz=-.z=u. 

z 

We have thus simply formally concealed u in a product of two 
factors. Nonetheless, the task is thereby in fact already solved, 
since the problem has been transformed from the differentiation 
of a fraction to the differentiation of a product, for which we have 
the magic formula in our pocket. According to this formula: 

c) du = zdy + ydz . 

~ 
.~: 

If-' 

~~ 
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We see immediately that the first term of the second side, 
namely zdy , must remain sitting in peace at its post until the 
crack of doom (genau vor Torschluss), since the task consists 

precisely in finding the differential of y ( =; )• and thus its 

expression in differentials of u and z. For this reason, on the 
other hand, ydz is to be removed to the left-hand side. There
fore: 

d) du- ydz = zdy . 

We now substitute the value of y, namely .'!, into ydz , so 
z 

that 

therefore 

u 
du - - dz = zdy ; 

z 

zdu- udz d 
= z y. 

z 

The moment has now come to free dy of its 'sleeping partner'* 
z, and we obtain 

u zdu- udz = dy = dz- · 
z' 

* Original in English~ Trans. 
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A PAGE INCLUDED IN THE NOTEBOOK 
'B (CONTINUATION OF A) II'50 

1) Newton, born 1642, t1729. 'Philosophiae natura/is prin-
cipia mathematica', pub. 1687. 

L. I. Lemma XI, Schol. Lib. II. 
L. II. Lemma II, from Proposition VII. 51 

'Anarysis per quantitatum series, fluxiones etc.', composed 
1665, pub!. 1711.52 

2) Leibnitz. 
3) Taylor (J. Brook), born 1685, t1731, published 1715,17: 

'M ethodus incrementorum etc.' 
4) MacLaurin (Colin), born 1698, t1746. 

[ 5) John Landen.[ 

6) D'Alembert, born 1717, t1783. 'Traitti desfluides', 1744.53 

7) Euler (Leonard), [born] 1707, t1783. 'Introduction d 
l' analyse de l' infini', Lausanne, 17 48. 'Institutions du calcul 
differentiel', 1755 (p.I, c.III).54 

8) Lagrange, born 1736. 'Theorie des fonctions analytiques' 
(1797 and 1813) (see Introduction). 

9) Poisson (Denis, Simeon), born 1781, t1840. 
10) Laplace (P. Simon, marquis de), born 1749, t1827. 
11) Moigno's, 'Le,ons de Calcul Differentiel et de calcul 

integral' . ss 
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I. FIRST DRAFTS 

Newton: born 1642, t1727 (85 years old). Philosophiae 
natura/is principia mathematica (first published 1687; c.f. 
Lemma I and Lemma XI, Schol.) 

Then in particular: Analysis per quantitatum series fluxiones 
etc., first published 1711, but composed in 1665, while Leibnitz 
first made the same discovery in 1676. 

Leibnitz: born 1646, t1716 (70 years old). 
Lagrange: born 1736, tduring the Empire (Napoleon I); he is 

the discoverer of the method of variations. Thiorie des fonctions 
analytiques (1797 and 1813). 

D'Alembert: born 1717, t1783 (66 years old). Traite des 
jluides, 17 44. 

1) Newton. The velocities or fluxions, of for example the 
variables x ,y etc. are denoted by :i:,j etc. For example if u and 
x are connected quantities (fluents) generated by continuous move
ment, then u and :i: denote their rates of increase, and 

therefore '!- the ratio of the rates at which their increments are 
X 

generated. 
Since the numerical quantmes of all possible magnitudes 

may be represented by straight lines, and the moments or infi
nitely small portions of the quantities generated= the products 
of their ·velocltles and the infinite]~' sn1a1l 1irrw intervals during 
\Vhich these \'docities v.;;i:-;t.: 6 so 1hl:n \\'t lJaVe T d;_-=:J.;oting 
lht~sc infinilt')y :-;rnal1 IJJJJc inlen'rtb:~ cmd l1e Jnumen1s of .x and 
.;' rcprcsen1rd tJ: ;OJJd re;,pcctJ\'C"ly. 

'?6 
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For example: y = uz; [with] j, i, u denoting the velocities at 
whichy, z, u respectively [are] increasing, then the moments of 
y, Z, U are 'tj, LZ, LU:, and we obtain 

y = uz' 

y + -ry = (u + -ru) (z + -rz) = uz + u-rz + z-ru + -r 2 uz ; 

hence 

-ry = u-rz+ z-ru+ <2 uz. 

Since -r is infinitesimal, it disappears by itself and even more 
as the product 1: 2 uz altogether, since it is not that of the 
infinitely small period of time 1: , but rather its 2nd power. 

'If - I h 2 - I 'I 1: - -. -. -, t en 't - . . . . . 
\ m1lhon 1 million. x 1 milhon, 

We thus obtain 

y=uz+zu, 

or the fluxion of y = uz is uz + zu . 57 

2) Leibnitz. The differential of uz is to be found. 
u becomes u + du, z becomes z + dz; so that 

uz+ d(uz) = (u+ du) (z+ dz) = uz+ udz+ zdu+ dudz. 

If from this the given quantity uz is subtracted, then there 
remains udz + zdu + dudz as the increment; dudz, the pro
duct d'un infiniment petit du par un autre infiniment petit dz, (of 
an infinitely small du times another infinitely small dz)* is an 
infinitesimal of the second order and disappears before the 
infinitesimals udz and zdu of the first order; therefore 

d(uz) = udz + zdu 58 

3); D'Alembert. Puts the problem in general terms thus: 
If we have 

_y ~: _f(x) ~ 

\'1 X -;- h ~' 

ln J !'';;;!- ''J :he (l;·;l~j_,,~d j i'i/Jt: . 
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78 MATHEMATICAL MANUSCRIPTS 

[we are] to determine what the value ofY• ~ Y becomes when 

the quantity h disappears, and thus what is the value of ~. 59 

Newton and Leibnitz, like the majority of the successors 
from the beginning performed operations on the ground of the 
differential calculus, and therefore valued differential expre
ssions from the beginning as operational formulae whose real 
equivalent is to be found. All of their intelligence was con
centrated on that. If the independent variable x goes to x 1 , 

then the dependent variable.goes toy 1 • x 1 - x, however, is 
necessarily equal to some difference, let us say, = h . This is 
contained in the very concept of variables. In no way, however, 
does it follow from this that this difference, which = dx, is a 
vanished [quantity], so that in fact it = 0. It may represent a 
finite difference as well. If, however, we suppose from the very 
beginning that x, when it increases, goes to x + x (the 't which 
Newton uses serves no purpose in his analysis of the fun
damental functions and so may be suppressed60), or, with 
Leibnitz, goes to x + dx, then differential expressions immedi
ately become operational symbols (Operationssymbole) without 
their algebraic origin being evident. 

To IS* (Newton). 
Let us take Newton's beginning equation for the product uz 

that is to be differentiated; then: 

y = uz ' 

y+ 'Y = (u+ lie) (z+ h) 

* See pages 49-51 in this edition. 

j 
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If we toss out the 't, as he does himself if you please, after he 
develops the first differential equation, we then obtain: 

y + j = (u + u) (z + z) ' 

y+y =uz+uz+zu+zu 

y + y- uz = uz + zu + uz. 

So that, since uz = y , 

y=liz+zu+uz. 

And in order to obtain the correct result uz must be sup
pressed. 

Now, whence arises the term to be forcibly suppressed, uz? 
Quite simply from the fact that the differentials y of y, u of. 

u , and z of z have from the very beginning been imparted by 
definition* a separate, independent existence from the variable 
quantities from which they arose, without having been derived 
in any mathematical way at all. 

On the one hand one sees what usefulness this presumed 
existence of dy, dx or y, x has, since from the very beginning, 
as soon as the variables increase I have only to substitute in the 
algebraic function the binomials y + y, x + x etc. and then may 
just manipulate (mano"vrieren) these themselves as ordinary 
algebraic quantities. 

I obtain, for example, if I have y = ax: 

y+y=ax+ax; 

so that 

y- ax+ j =ax; 

hence 

:Y =ax 

I have therewith immediately obtained the result: the diffe
rential of the dependent variable is equal to the increment of 

* Original: 'Difinition', presumably 'Definition'- Trans. 
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ax , namely ax ; it is equal to the real value a derived from ax* 
(that this is a constant quantity here is accidental and does 
nothing to alter the generality of the result, since it is due to the 
circumstance that the variable x appears here to the ftrst 
power). If I generalise this result, 61 then I know y = f(x), for 
this means that y is the variable dependent on x . If I call the 
quantity derived from f(x), i.e. the real element of the incre
ment, f(x), then the general result is: 

y = f(x)x. 

I thus know from the very beginning that the equivalent of 
the differential of the dependent variable y is equal to the ftrst 
derived function of the independent variable, multiplied by its 
differential, that is dx or x . 

So then, generally expressed, if 

y = f(x) 

then 

dy = f(x)dx 

or y = the real coefftcient in x (except where a constant appears 
because x is to the first power) times x . 

But y = ax gives me immediately f = a, and in general: 
X 

:i!_ = f(x) · x 
I have thus found for the differential and the differential 

coefficients two fully-developed operational formulae which 
form the basis of all of differential calculus. 

And furthermore, put in general terms, I have obtained, by 
means of assuming dx, dy etc. or x, y etc. to be independent, 
insulated increments of x and y, the enormous advantage, 
distinctive to the differential calculus, that all functions of the 
variables are expressed from the very beginning in differential 
forms. 

* That is. j_ = a- Trans. , x 
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Were I thus to develop the essential functions of the vari

ables in thls manner, such as ax, ax±b, xy, ~. x", ax, 
y 

log x , as well as the elementary trigonometric functions 

then the determination of dy, ;t would thus become 

completely tamed, like the multiplication table in arithmetic. 
If we now look, however, on the reverse side we ftnd inunedi

ately that the entire original operation is mathematically false. 
Let us take a perfectly simple example: y = x 2

• If x increases 
then it contains an indeterminate increment h, and the variable 
y dependent on it has an indeterminate increment k, and we 
obtain 

y+k=(x+h) 2 =x2 +2hx+h2 , 

a formula which is given to us by the binom [ial theorem J . 
Therefore 

y + k- x 2 or y + k- y = 2hx + h2; 

hence 

(y + k)- y or k = 2hx + h2; 

if we divide both sides by h then: 

k 
h=2x+h. 

We now seth = 0, and this becomes 

2x+h=2x+0=2x 

On the other side, however, ~ goes to ~ . Since, however, 

y only went toy+ k because x went to x + h, and then y + k 
goes back to y when h goes to 0, therefore when x + h 

k 0 
goes back to X+ 0, to X. So then k also goes to 0 and 0 = o' 
which may be expressed as ddy or t . We thus obtain: 

X X 
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0 Y = 2x. - or -:-
0 X 

If on the other hand we [substitute h = 0 J in 

y+k-x2 =2hx+h2 or (y+k)-y=2xh+h 2 

(his only replaced by the symbol dx after it has previously been 
set equal to 0 in its original form), we then obtain k = 0 + 0 = 
0, and the sole resultthat we have reached is the insight into our 
assumption, merely thaty goes toy+ k, if x goes to x + h . .. 
so that if x + h = x + 0 = x, then y + k = y, or k = 0. 

In no way do we obtain what Newton makes of it: 

k =. 2xdx + dxdx 

or, in Newton's way of writing: 

y=2xx+xx; 

h only becomes x , and therefore k becomes y , as soon as h has 
passed the hellish ride through 0, that is, subsequent to the 
difference x 1 - x(or(x+ h)- x)and thereforethatofy 1 - y 
as well(= (y + k)- y) having been reduced to their absolutely 
minimum expressions (Mimimalausdruck), x- x = 0 andy- y 
= 0. 

Since Newton, however, does not immediately determine the 
increments of the variables x, y, etc by means of mathematical 
derivation, but instead immediately stamps x, y, etc on to the 
differentials, they cannot be set = 0; for otherwise, were the 
result 0, which is algebraically expressed as setting this incre
ment from the very beginning = 0, it would follow from that, 
just as above in the equation 

(y + k) - y = 2xh + h 2 ' 

h would immediately be set equal to 0, therefore k = 0, and 
consequently in the final analysis we would obtain 0 = 0. The 
nullification of h may not take place prior to the first derived 
function of x, here 2x, having been freed of the factor h 
through division, thus: 
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y,~ y = 2x + h . 

Only then may the finite differences be annulled. The diffe
rential coefficient 

dy = 2x 
dx 

therefore also must have previously been developed, 62 before 
we may obtain the differential 

dy = 2xdx 

Therefore nothing more remains than to imagine the incre
ments h of the variable to be infinitely small increments and to 
give them as such independent existence, in the symbols x ,y etc. 
or dx, dy [etc.] for example. But infinitely small quantities are 
quantities just like those which are infinitely large (the word 
infinitely (unendlich) [small] only means in fact indefinitely 
(unbestimmt) small); the dy, dx etc. or y, x [etc.] therefore also 
take part in the calculation just like ordinary algebraic quan
tities, and in the equation above 

(y + k)- y or k = 2xdx + dxdx 

the dxdx has the same right to existence as 2xdx does; the 
reasoning (Raisonnement) is therefore most peculiar by which it 
is forcibly suppressed, namely, by direct use of the relativity of 
the concept of infinitesimal (unendlich klein). dxdx is sup
pressed because it is infinitely small compared to dx, and thus 
as well to 2xdx, or to 2xx . .. 

But (Oder), if in 

y=uz+zu+uz 

the uz is suppressed because it is infinitely small compared to 

liz or zu, then one would thereby be forced to admit mathemat
ically that uz + zu is only an approximate value (Anniiherung
swert), in imagination as close as you like. This type of man
oeuvre occurs also in ordinary algebra. 

But then in walks the still greater miracle that by this method 
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you don't obtain an approximate value at all, but rather the 
unique exact value (even when as above it is only symbolically 
correct) of the derived function, such as in the example 

y=Zxx+xx. 
If you suppress here xx, you then obtain: 

y = 2xx 

and 

2..= 2x . , 
X 

which is the correct frrst derived function of x 2 , as the 
binom[ial theorem] has already proved. 

But the miracle is no miracle. It would only be a miracle if no 
exact result emerged through the forcible suppression of xx. 
That is to say, one suppresses merely a computational mistake 
which nevertheless is an unavoidable consequence of a method 
which brings in the undefmed increment of the variable, i.e. h, 
immediately as the differential dx or x, a completed operational 
symbol, and thereby also produces from the very beginning in 
the differential calculus a characteristic manner of calculation 
different from the usual algebra. 

The general direction of the algebraic method which we have 
applied may be expressed as follows: 

Givenf(x), frrst develop the 'preliminary derivative', which 
we would like to call J'(x): 

1) 
L'.y L'.y 

f'(x) = L'.x or L'.x = J'(x) 

From this equation it follows 

6y = f'(x)6x . 

HISTORICAL DEVELOPMENT 

So that as well 

L',f(x) = f'(x)L'.x 

(sincey = f(x), [thus] L'.y = f?>-J(x)) 

85 

By means of setting x 1 - x = 0, so that y 1 - y = 0 as well, 

we obtain 

[2)] 

Then 

so that also 

dy = f(x) 
dx 

dy = f(x)dx; 

df(x) = f(x)dx 

(sincey =f(x),dy = df(x)). 

When we have once developed 

1) L'.f(x) = J'(x)L'.x , 

then 

2) df(x) = f(x )dx 

is only the differential expression of 1). 

1) If we have x going to x 1 , then 

A) x 1 - x = L'.x ; 

whence the following conclusions may be drawn 

A a) 6x = x 1 - x ; a) x 1 - D.x = x 
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6x, the difference between x 1 and x, is therefore positively 
expressed as the increment of x; for when it is subtracted again 
from x 1 the latter returns once more to its original state, to x. 

The difference may therefore be expressed in two ways: 
directly as the difference between the increased variable and its 
state before the increase, and this is its negative expression; 
positively as the increment.,* as a result: as the increment of x to 
the state in which it has not yet grown, and this is the positive 
expression. . 

We shall see how this double formulation plays a role in the 
history of differential calculus. 

b)x 1 =x+6x. 

x 1 is the increased x itself; its growth is not separated from it; 
x 1 is the completely indeterminate form of its growth. This 
formula distinguishes the increased x, namely x 1 , from its 
original form prior to the increase, from x , but it does not 
distinguish x from its own increment. The relationship between 
x 1 and x may therefore only be expressed negatively, as a 
difference, as x 1 - x. In contrast, in 

x 1 = x+6x 

I) The difference is expressed positively as an increment. 
of x. 

2) Its increase is therefore not expressed as a difference, but 
instead as the sum of itself in its original state + its increment. 

3) Technically x is expelled from its monomial into a bino
mial, and wherever x appears to any power in the original 
function a binomial composed of itself and its increment enters 
for the increased x; the binomial (x + h)m in general for xm. 
The development of the increase of x is therefore in fact a 
simple application of the binomial theorem. Since x enters as the 
first and l:,.x as the second term of this binomial - which is 
given by their very relationship, since x must be [there] before 
the formation of its increment l:,.x -by means of the binomial, 

"' Marx added here in pencil 'or decrement' -Ed. 
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in the event only the functions of x will be derived, while 6x 
figures next to it as a factor raised to increasing powers; indeed, 
6x to the first power must [appear], so that l:,.x 1 is a factor of 
the second term of the resulting series, of the first function, that 
is, of x 1 derived, using the binomial theorem. This shows up 
perfectly when x is given to the second power. x2 goes to 
(x + h)2 , which is nothing more than the multiplication of 
x + 6x by itself, [and which] leads to x 2 + 2x!:,.x + fu 2

: that is, 
the first term must be the original function of x and the first 
derived function of x 2 , namely [2Jx here, comprises the second 
term together with the factor 6x 1 , which entered into the first 
term only as the factor fu0 = l . So then, the derivative is not 
found by means of differentiation but rather by means of the 
application of the binomial theorem, therefore multiplication; 
and this because the increased variable x 1 takes part from the 
very beginning as a binomial, x + !:,.x . 

4) Although 6x in x+fu is just as indefinite, so far as its 
magnitude goes, as the indefinite variable x itself, 6x is 
defined as a distinct quantity, separate from x, like a fruit 
beside the mother who had previously borne her (als Frucht 
neben ihrer Mutter, bevor diese geschwangert war). 

x + 6x not only expresses in an indefinite way the fact that x 
has increased as a variable; rather, it [also] expresses by how 
much it has grown, namely, by fu. 

5) x never appears as x 1; the whole development centres 
around the increment 6x as soon as the derivative has been 
found by means of the binomal theorem, by means, that is, of 
substituting x + l:,.x for x in a definite way (in bestimmten 

Grad). On the left-hand side, however, if in y,~y, the l:,.x 

becomes = 0, it finally appears as x 1 - x again, so that: 

y,- y 
l:,.x 

y,- y * 
x 1 - x 

* Marx added here in pencil: ~; . -Ed. 



88 MATHEMATICAL MANUSCRIPTS 

The positive side, where x 1 - x = 0 takes place, namely x 1 

becoming = x , can therefore never enter into the development, 
since x 1 as such never enters into the side of the resultant series 
(Entwicklungsreihe ); the real mystery of the differential calculus 
makes itself evident as never before. 

6) lfy =f(x) andy 1 =f(x+6x),thenwecansaythatin 
using this method the development of y 1 solves the problem of 
finding the derivative. 

c) x+6x = x1 (so thaty+.C.y = y 1 as well). 6x here may 
only appear in the form 6x = x 1 - x , therefore in the negative 
form of the difference between x 1 and x , and not in the positive 
form of the increment of x , as in x 1 = x + 6x . 

1) Here the increased x is distinguished as x 1 from itself, 
before it grows, namely from x; but x1 does not appear as an x 
increased by 6x, so x 1 therefore remains just exactly as inde
finite as x is. 

2) Furthermore: however x enters into any original func
tion, so x 1 does as the increased variable in the original func
tion now altered by the increase. For example, if x takes part in 
the function x3 , so does x 1 in the function xj. 

Whereas previously, by means of substituting (x+6x) 
wherever x appeared in the original function, the derivative 
had been provided ready-made by the use of the binomial, 
leaving it burdened with the factor 6x and the first of other 
terms in x burdened with 6x2 etc., so now there is just as little 
which can be derived directly from the immediate form of 
the monomial- xi- as could be got from x3

• It does provide, 
however, the difference xi- x 3 • We know from algebra that all 
differences of the form x3 - a 3 are divisible by x- a ; the given 
case, therefore, is divisible by x 1 - x . In therefore dividing 
xi- x3 by x 1 - x (instead of, [as] previously, multiplying the 
term (x + .C.x) by itself to the degree specified by the function), 
we obtain an expression of the form (x 1 - x)P, wherein 
nothing is affected whether the original function of x contains 
many terms (and so contains x to various powers) or as in our 
example is of a single term. This x 1 - x passes by division to 
the denominator of y 1 - y on the left-hand side and thus pro-

HISTORICAL DEVELOPMENT 89 

duces y,- Y there, the ratio of the difference of the function to 
Xt- X 

the difference of the independent variable x in its abstract 
difference-formula (J)ifferenzform ). The development of the 
difference between the function expressed in x 1 and that 
expressed in x into terms, all of which have x 1 - x as a factor, 
may well require algebraic manipulation (Maniiver) to a greater 
or lesser degree, and thus may not always shed as much light as 
the form xi- x3 • This has no effect on the method. 

When by its nature the original function does not allow 
the direct development into ( x 1 - x) P, as was the case with 
f(x) = uz (two variables both dependent on x), (x 1 - x) 

. I 
appears [in] the factor -- .. Furthermore, after the re-

xt- x 
moval of x 1 - x to the left -hand side by means of dividing both 
sides by it, x 1 - x still continues to exist in P itself (as, for 
example, in the derivation from y = a•, where we find 

:,'~: =a•j(a-1)+ (x,~.x]- 1 ca-1) 2 + etc.), 

where setting x 1 - x = 0 produces 

1 1 ) = a•j(a- 1)- 2ca- 1) 2 + 3ca- 1)3 - etc. ) ; 

this is only possible when, as in the example just given, it so 
happens that setting x 1 - x = 0 [allows] it to disappear, and 
then always leaves positive results behind in its place. In other 
words the (x 1 - x)s left behind in P may not be combined 
with the rest of the elements of P as factors (as multiplicands). 
P would otherwise be factorable into P = p(x 1 - x), and then, 
since x 1 - x has already been set = 0, into p . 0; hence 
p = 0 ... 63 
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The first finite difference, x'l.- x3 , where y = x3 

and y 1 = x'l., has therefore been evolved to 

hence 

y 1 -y = (x 1 -x)P, 

Y1-y = p 
xl- x 

P, an expression combining x 1 and x, is = f' , the derivative of 
the first finite difference, whence x 1 - x has been quite elimi
nated,aswellasthoseofhigherdegree, (x 1 - x) 2 etc. x 1 and 
x may therefore only be combined iri positive expressions, such 

as x 1 +x, x 1 x,~, )x1 x etc. Were therefore x 1 to be 
X 

now set = x, these expressions would then become 2x, x2 
, = 

X 

or 1, )xx or x etc., respectively, and only on the left-hand side, 
where x 1 - x comprises the denominator, is 0 produced and 
therefore the symbolic differential coefficient etc. 

L 
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II. THE HISTORICAL PATH OF DEVELOPMENT 

1) Mystical Differential Calculus. x 1 = x + 6x from the 
beginning changes into x 1 = x + dx or x + x, where dx is 
assumed by metaphysical explanation. First it exists, and then 
it is explained. 

Then, however, y, = y + dy or y 1 = y + y. From the 
arbitrary assumption the consequence follows that in the 
expansion of the binomial x + fu or x + x , the terms in x and 
6x which are obtained in addition to the first derivative, for 
instance, must be juggled away in order to obtain the correct 
result etc. etc. Since the real foundation of the differential 
calculus proceeds from this last result, namely from the diffe
rentials which anticipate and are not derived but instead are 

assumed by explanation, then d<IJ' or i as well, the symbolic 
X X 

differential coefficient, is anticipated by this explanation. 
If the increment of x. = 6x and the increment of the variable 

dependent on it = /':,.y , then it is self-evident (versteht sich von 

selbst) that~ represents the ratio ofthe increments of x andy. 

This implies, however, that /':,.x figures in the denominator, 
that is the increase of the independent variable is in the 
denominator instead of the numerator, not the reverse; while 
the fmal result of the development of the differential form, 
namely the differential, is also given in the very beginning by the 
assumed differentials.* 

* Marx distinguishes the differentials (die D1jjerenriellen) dx and dy) the 
infinitesimals of the differences f:::.x and !::,.y, from the differential (das Dlffe
rencial): dy ~ f(x)dx. -Trans. 
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If I assume the simplest possible (aUereinfachste) ratio of the 
dependent variable y to the independent variable x , then y = 
x . Then I know that dy = dx or y = x . Since, however, I seek 
thederivativeoftheindependent [variable] x, which here= x, 
I therefore have to divide 64 both sides by x or dx, so that: 

dy y 
-d or-:-=1. 

X X 

I therefore know once and for all that in the symbolic diffe
rential coefficient the increment [of the independent variable] 
must be placed in the denominator and not in the numerator. 

Beginning, however, with functions of x in the second 
degree, the derivative is found immediately by means of the 
binomial theorem [which provides an expansion] where it 
appears ready made (fix und fertig) in the second term combined 
with dx or x ; that is with the increment of the frrst degree + 
the terms to be juggled away. The sleight of hand (Eskamotage ), 
however, is unwittingly mathematically correct, because it only 
juggles away errors of calculation arising from the original 
sleight-of-hand in the very beginning. 

x 1 = x + L'l.x is to be changed to 

x 1 = x + dx or x + x , 

whence this differential binomial may then be treated as are the 
usual binomials, which from the technical standpoint would be 
very convenient. 

The only question which still could be raised: why the mys
terious suppression of the terms standing in the way? That 
specifically assumes that one knows they stand in the way and 
do not truly belong to the derivative. 

The answer is very simple: this is found purely by exper
iment. Not only have the true derivatives been known for a long 
time, both of many more complicated functions of x as well as 
of their analytic forms as equations of curves, ere., but they 
have also been discovered by means of the most decisive exper
iment possible, namely by the treatment of the simplest algeb
raic function of second degree for example: 
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y = x2 

y+ dy = (x+ dx) 2 = x 2 + 2xdx + dx 2 , 

y + y = (x + x) 2 = x 2 + 2xx + x 2 • 

93 

If we subtract the original function, x 2 (y = x2 ) , from both 
sides, then: 

dy = 2x dx + dx 2 

y=2xx+xx; 

I suppress the last terms on both [right] sides, then: 

and further 

or 

dy=2xdx, y=2xx, 

dy = 2x , 
dx 

Y = 2x. x 
We know, however, that the first term out of (x + a) 2 is x 2 ; 

the second 2xa ; if I divide this expression by a , as above 2x dx 
by dx or 2xx by x, we then obtain 2x as the first derivative of 
x2

, namely the increase in x, 65 which the binomial has added to 
X

2
• Therefore the dx 2 or xx had to be suppressed in order to 

find the derivative; completely neglecting the fact that nothing 
could begin with dx 2 or Xi* in themselves. 

In the experimental method, therefore, one comes- right at 
the second step- necessarily to the insight that dx 2 or xx has 
to be juggled away, not only to obtain the true result but any 
result at all. 

Secondly, however, we had in 

2x dx + dx 2 or 2x:i: + xx 

* Printed edition has misprint xi here. - Trans. 
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the true mathematical expression (second and third terms) of 
the binomial (x + dx ) 2 or (x + x )2 • That this mathematically 
correct result rests on the mathematically basically false assump
tion that x 1 - x = t::.x is from the beginning x 1 - x = dx or x , 
was not known. 66 

In other words, instead of using sleight of hand, one obtained 
the same result by means of an algebraic operation of the 
simplest kind and presented it to the mathematical world. 

Therefore: mathematicians (man ... selbst) really believed 
in the mysterious character of the newly-discovered means of 
calculation which led to the correct (and, particularly in the 
geometric application, surprising) result by means of a posi
tively false mathematical procedure. In this manner they 
became themselves mystified, rated the new discovery all the 
more highly, enraged all the more greatly the crowd of old 
orthodox mathematicians, and elicited the shrieks of hostility 
which echoed even in the world of non-specialists and which 
were necessary for the blazing of this new path. 

2) Rational Differential Calculus. D' Alembert starts directly 
from the point de depart (sic) of Newton and Leibnitz: 
x 1 = x + dx . But he immediately makes the fundamental 
correction: x 1 = x + ~x, that is, x and an undefined but prima 
facie finite increment which he calls h . The transformation of 
this h or ~x into dx (he uses the Leibnitz notation, like all 
Frenchmen) is first found as the final result of the development 
or at least just before the gate swings shut (vor Toresschluss), 
while in the mystics and the initiators of the calculus it appears 
as the starting point (d' Alembert himself begins with the sym
bolic side,* but first transforms it symbolically). By this means 
he immediately succeeds in two ways. 67 

a) The ratio of differences 

f(x +h)- f(x) 

h 
f(x + h)- f(x) 
~ ---·-~---

x 1 ~ x 

is the starting point of his construction (Bi/dung). 

;-Traditionally the left-hand side- Tram. 

I 
I 
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1) [the cijfference] f(x + h)- f(x), corresponding to the 
given algebraic function in x, stands out as soon as you replace 
x itself with its increment x + h in the original function in x , 
for example, in x3 . This form ( = y 1 - y, if y = f(x)) is that of 
the difference of the function , whose transformation into a ratio 
of the increment of the function to the increment of the inde
pendent variable now requires a development, so that it plays a 
real role instead of a merely nominal one, as it does with the 
mystics; for, if I have in these authors 

f(x) = X 3 , 

f(x+ h)= (x+ h) 3 = x 3 + 3x2 h+ 3xh2 + h3 , 

then I know from the very beginning, that in 

f(x +h)- f(x) = x 3 + 3x2 h + 3xh 2 + h3 - x3 , 

the opposing sides are to be reduced to the increment. This 
needn't even be written down, since I see that on the second 
side the increment of x3 = the three following terms as well as 
thatinf(x+ h)- f(x), onlytheincrementoff(x) remains, or 
dy. The first difference equation (Differenzgleichung) therefore 
only plays a role which from the very beginning is to disappear 
again. The increments stand opposite one another on both 
sides, and if I have them then I have from the definition of 

dx, dy that ddy or ;t is the ratio etc.; I therefore do not 
X X 

need the first difference, formed by the subtraction of the 
original function in x from the altered (by the replacement of x 
by x + h) function (the increased function), in order to 

d . 
construct 2' or 1:'.. 

dx X 

In d' Alembert it is necessary to hold fast to this difference 
because the steps of the development (Entwicklungs
bewegungen) are to be executed upon it. In place of the 
positive expression of the difference, namely the increment, the 
negative expression of the increment, namely the difference, 
and thus f(x + h)- f( x), therefore comes to the fore on the 
left-hand side. And this emphasis on the difference instead of 
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the increment ('fluxion' in Newton) is foreshadowed at least in 
the dy ofLeibnitzian notation as opposed to the Newtonianj. 

2) f(x+ h)- f(x) = 3x2h+ 3xh2 + h3 • 

When both sides have been divided by h, we obtain 

f(x + :)- f(x) = 3x2 + 3xh + h2. 

Thereby is formed on the left-hand side 

f(x+ h)- f(x) = (x+ h)- f(x) 
h x 1 - x 

which therefore appears as a derived ratio of finite differences , 
while with the mystics it was a completed ratio of increments 
given by the definitions of dx or :i; and dy or y. 

3) Now when in 

f(x +h)- f(x) = f(x +h)- f(x) 
h x 1 - x 

his set= 0, or x 1 = x so that x 1 - x = 0, this expression is 

transformed to Z, while by means of this setting h = 0 the 

terms 3xh + h2 all become [zero] simultaneously, and this by 
means of a correct mathematical operation. They are thus now 
discarded without sleight of hand. One obtains: 

0 dy 
4) - or - = 3x 2 = f(x) . 

0 dx 
Just as with the mystics, this already existed as given, as soon 

as x became x + h, for (x + h )3 in place of x3 produces 
x3 + 3x2 h + etc., where 3x2 already appears in the second 
term of the series as the coefficient of h to the first power. The 
derivation is therefore essentially [the] same as in Leibnitz and 
Newton, but the ready-made derivative 3x 2 is separated in a 
strictly algebraic manner from its other companions. It is no 
development but rather a separation ofthef'(x) -here 3x 2 

-

from its factor h and from the neighbouring terms marching in 

L 
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closed ranks in the series. What has on the other hand really 
been developed is the left-hand, symbolic side, namely dx, dy, 

and their mtio, the symbolic differential coefficient ! = ~ 

(rather the inverse, ~ = ! ), which in turn once more generates 

certain metaphysical shudderings, although the symbol has 
been mathematically derived. 

D' Alembert stripped the mystical veil from the differential 
calculus and took an enormous step forward. Although his 
Traitedesfluides appeared in 1744 (seep.l5*), the Leibnitzian 
method continued to prevail for years in France. It is hardly 
necessary to remark that Newton prevailed in England until the 
first decades of the 19th century. But here as in France earlier 
d' Alembert's foundation has been dominant until today, with 
some modifications. 

3) Purely Algebraic Differential Calculus. Lagrange, 'Theorie 
desfonctions analytiques' (1797 and 1813). Just as under I) and 
2), the first starting point is the increased x; if 

y or f(x) = etc., 

then it is y 1 or f(x + dx) in the mystical method, y 1 or 
f(x+ h) (= f(x + L>l:)) in the rational one. This binomial 
starting point immediately produces the binomial expansion on 
the othert side, for example: 

xm + mxm-lh + etc., 

where the second term mxm-t h already yields ready-made the 
real differential coefficient sought, mxm-t . 

a) When x + h replaces x in a given original function of x, 
f(x + h) is related to the series expansion (Entwicklungsreihe) 
opposite it in exactly the same way that the undeveloped general 
expression in algebra, in particular the binomial, is related to its 
corresponding series expansion, as (x + h )3 , for example in 

(x+h) 3 =x3 +3x2 h+ etc., 

,:.Seep.76 

t i.e. right-hand -Trans. 

·i I"! 
!t' 

·}I 
~~~ 
!j 

t 
l.i 

Iii 

rj 

i 
lil. 
1,. 
h 
'J ~ 
ll:l 
'r!· ' ~ l 
i ~ ! ,,, 

ii. 
:_:, 

',·,, 
:I: 
l.( 
[,• 
: i~.l] 



98 MATHEMATICAL MANUSCRIPTS 

is related to its equivalent series expansion x 3 + 3x2 h + etc. 
With that step f(x + h) enters into the very same algebraic 
relationship (only using variable quantities) which the general 
expression has toward its expansion throughout algebra, the. 

relationship, for example, which _a_ in 
a-x 

a 
---= 
a-x 

x x 2 x3 

1+-+- +- + 
a a2 a3 

etc., 

has toward the series expansion 1 + etc., or which sin( x + h) 
in 

sin(x + h) = sin x cosh+ cos x sinh 

has toward the expansion standing opposite it. 
D'Alembert merely algebraicised (x + dx) or (x + x) into 

(x +h), and thus.f\x +h) fromy + dy, y + j into/(x +h). 
But Lagrange reduces the entire expression (Gesamrausdruck) 
to a purely algebraic character, since he places it, as a general 
underdeveloped expression, opposite the series expansion to be 
derived from it. 

b) In the first method I) , as well as the rational one 2) , the 
real coefficient sought is fabricated ready-made by means of the 
binomial theorem; it is found at once in the second term of the 
series expansion, the term which therefore is necessarily com
bined with h1 • All the rest of the differential process then, 
whether in I) or in 2), is a luxury. We therefore throw the 
needless ballast overboard. From the binomial expansion we 
know once and for all that the first real coefficient is the factor of 
h, the second that of h2, and so on. The real differential 
coefficients are nothing other than those of the binomially 
developed series of derived functions of the original function in x 
(and the introduction of this category of derived function one of 
the most important). As for the separate differential forms, we 
know that L.x is transformed into dx, D._v into dy, and that the 

symbolic figure of i,; represents the first derivative, the sym-

bolic figure ~~ represents the second derivative, the coeffic-

i 
L 

HISTORICAL DEVELOPMENT 99 
r-

ient of 2 h
2 , etc. We may thus allow the symmetry of half 

of our purely algebraically obtained result to appear at the same 
time in these its differential equivalent quantities (Dif
ferentialiiquivalenten)- a matter of nomenclature alone, all that 
remains from differential calculus proper. The whole problem 
is then resolved into finding (algebraic) methods 'of developing 
all kinds of functions of x + h in integral ascending powers of 
h , which in many cases cannot be effected without great pro
lixity of operation'. 68 

Until this point there is nothing in Lagrange which could not 
be a direct result of d' Alembert's method (since this includes 
also the entire development of the mystics, only corrected). 

-c) While the development, therefore, of y 1 or f(x + h) = 
etc. steps into the place of the differential calculus up to now 
[and thereby, in fact, clarifies the mystery of the methods 
proceeding from 

y+dy ory+j, x+dx orx+x, 

namely that their real development rests on the application of 
the binomial theorem, while they represent from the very 
beginning the increased x 1 as x + dx, the increased y 1 as 
y + dy, and thus transform a monomial into a binomial} the 
task now becomes, since we haveinf(x + h) a function wtthout 
degree before us, the general undeveloped expression itself only, 
to derive algebraically from this undeveloped expression the 
general, and therefore valid for all power functions of x, series 
expansion. 

Here Lagrange takes as his immediate starting point for the 
algebraicisation of the differential calculus the theorem of Tay
lor outlived by Newton and theN ewtonians 69 which in fact is the 
most general, comprehensive theorem and at the same time 
operational formula of differential calculus, namely the series 
expansion, expressed in symbolic differential coefficients, of 
y, or f(x + h), viz: 
y, or f(x + h) 

- dy d 2y h 2 d3y h3 d"y h4 

-y(orf(x))+ di+ dx 2 [2J+ dx 3 [2.3tdx4 12.3.4]+ etc. 
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d) Investigation of Taylor's and MacLaurin's theorem to be 
added here. 70 

e) Lagrange's algebraic expansion off(x + h) into an equi-

valent series, which Taylor's * etc. replaces, and it may only 

still be the symbolic differential expression of the algebraically 
derived functions of x. (This is to be continued from here 
on. 71 ) 

' ""----

III CONTINUATION OF EXTRACTS 

c) Continuation of [P·] 25* 
We have x 1 - x = fu from the beginning for the expression 

of the difference x 1 - x; the difference exists here only in its form 
as a difference (as, ify is dependent on x, y 1 - y is written for 
the most part). Since we set x 1 - x = /::;x, we already give the 
difference an expression different from itself. We express, if 
only in indeterminate form, the value of this difference as a 
quantity distinct from the difference itself. For example, 4-2 is 
the pure expression of the difference between 4 and 2; but 4-2 
= 2 is the difference expressed in 2 (on the right-hand side): a) 
in positive form, so no longer as the difference; b) the sub
traction is completed, the difference is calculated, and 4-2 = 2 
gives me 4 = 2+2. The second 2 appears here in the positive 
form of the increment of the original 2. Therefore in a form 
directly opposite to the difference form (einer der Differenzform 
entgegengesetzten F onn ). Just as a- b = c, a = b + c, where c 
appears as the increment of b , so in x 1 - x = /::;x, x 1 = 
x + /::;x, where fu enters immediately as the increment of x . 

The simple original setting x1 - x = /::;x = anythingt there
fore puts in place of the' difference form another form, indeed 
that of a sum, x 1 = x + /::;x, and at the same time simply 
expresses the difference x 1 - x as the equivalent of the value of 
this difference, the quantity /::;x. 

It'sjustthesameinx 1 - x = 6x,x 1 - 6x =x. Wehavethe 
difference form again here on the left-hand side, but this time as 
the difference between the increased x 1 and its own increment, 

• See p.84. 

t In English in the original. 
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standing independent next to it. The difference between it and 
the increment of x( =1\.x) is a difference which now already 
expresses a defined, if also indeterminate, value of x. 

If however one leaves the mystical differential calculus, 
where x 1 - x enters immediately as x 1 - x = dx, and one first 
of all* corrects dx to .6.x, then one begins from x 1 - x = .6.x; 
thus from x 1 = x + Ll.x; but this in turn may then be turned 
round to x + .6.x = x 1 , so that the increase of x again attains the 
undefined form x 1 , and as such enters directly into the cal
culus. This is the starting point of our applied algebraic 
method. 

d) From this simple distinction of form there immediately 
results a fundamental difference in the treatment of the calculus 
which we demonstrate in detail (see the enclosed loose sheets)72 

in the analysis of d'Alembert's method. Here we have only to 
remark in general: 

I) If the difference x 1 - x (and thus y 1 - y) enters immedi
ately as its opposite, as the sum x 1 = x+L\.x with its value 
therefore immediately in the positive form of the increment .6.x, 
then, if x is replaced by x + Ll.x everywhere in the original 
function in x, a binomial of definite degree is developed and the 
development of x 1 is resolved into an application of the binomial 
theorem. The binomial theorem is nothing but the general 
expression which results from a binomial of the first degree 
multiplied by itself m times. Multiplication therefore becomes 
the method of development of x1 [or] (x+Ll.x) if from the 
beginning we interpret the difference as its opposite, as a sum. 

2) Since in the general form x 1 = x + .6.x the difference 
x 1 - x, in its positive form Ll.x, in the form, that is of the 
increment, is the last or second term of the expression, thus x 
becomes the first and .6.x the second term of the original 
function in x when this is presented as a function in x + Ll.x. 
We know from the binomial theorem, however, that the second 
term only appears next to the first term as a factor raised to 
increasing powers, as a multiplier, so that the factor of the first 

* Original d'abord -Trans. 
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expression in x (which is determined by the degree of the 
binomial) is (Ll.x) 0 = I, the multiplier of the second term is 
( 1\.x) 1 , that of the third is ( .6.x )2, etc. The difference, in the 
positive form of the increment, therefore only comes in as a 
multiplier, and then for the frrst time, really (since (.6.x)0 = I), 
as the multiplier of the second term of the expanded binomial 
(x+L\.x)m. 

3) If on the other hand we consider the development of the 
function in x itself, the binomial theorem then gives us for this 
first term, here x, the series of its derived functions. For 
example, if we have (x + h)\ where his the known quantity in 
the binomial and x the unknown, we then have 

x4 + 4x3h + etc. 

4x3 , which appears in the second term and has the factor h 
raised to the first power, is thus the frrst derived function of x, 
or, expressed algebraically: if we have (x + h )4 as the unde
veloped expression of the binomial, then the developed series 
gives us for the frrst increase of x4 (for the increment) 4x', 
which enters as the coefficient of h. If, however, x is a variable 
quantity and we have f( x) = x4 , then this by its very growth 
becomes f(x + h), or, in the first form, • 

f(x+L\.x) = (x+.6.x)4 = x4 + 4.x3 .6.x + etc. 

x4 , which is provided for us in the usual algebraic binomial 
(x + h)4 as the frrst term of the binom[ial expansion], now 
appears in the binomial expression of the variable, in (x + .6.x )4

, 

as the reproduction of the original function in x before it 
increased and became (x +1\.x). It is clear from the very begin
ning by the nature of the binomial theorem that whenf(x) = x• 
becomesf(x +h)= (x + h)4

, the first member of [the expan
sion o~ (x + h)4 is equal to x 4 , that is, must be = the original 
function in x; (x + h )4 must contain both the original function 
in x (here x4 ) + the addition of all the terms which x4 gains by 
becoming (x + h)4

, and thus the first term [of the expansion 
o~ of the binomial (x + h) 4 [is the original function]. 

"' '1. 
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4) Furthermore: the second term of the binomial expansion, 
4x3h , provides us immediately ready-mmle (fix und fertig) with 
the first derived function of x•, namely 4.x3 • Thus this deri
vation has been obtained by the expansion of 

f(x+&) = (x+&)4 ; 

obtained by means of the interpretation from the beginning of 
the difference x 1 - x as its opposite, as the sum x + & . 

It is thus the binomial expansionof/(x + &), or y 1 , which 
f(x) has become by its increase, which gives us the first deriva
tive, the coefficient of h (in the binomial series); and indeed 
right at the beginning of the binomial expansion, in its second 
term. The derivative is thus in no way obtained by dif
ferentiation but instead simply by the expansion of f(x + h) or 
y 1 into a defined expression obtained by simple multiplication. 

The crucial point (Angelpunkt) of this method is thus the 
development from the undefined expression y 1 or f(x + h) to 
the defmed binomial form, but using not at all the development 
of x 1 - x and therefore as well of y 1 - y or f(x + h)- f(x) as 
differences. 

5) The only difference equation which comes out in this 
method is the one which we obtain immediately: 

/(x+&)=(x+&) 4 =x4 + 4x3&+6x2& 2 + 4x&3 +&4, 
when we write: 

x4 + 4x3 &+ 6x2 & 2 + 4x&3 +&4 -x4
, 

putting the original function x4
, which forms the beginning of 

the series, back again behind, we now have before us the 
increment which the original function in x obtained through the 
use of the binomial expansion. Newton also writes in this way. 
And so we have the increment 

4x3 f'..x + 6x2 & 2 + 4x & 3 + & 4 , 

the increment of the original function, x4 • This way we use, on 
the other hand, no difference of any kind. The increment of y 
comes from the increment of x, if 

L 
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y or f(x) = x4 • 

So that Newton also writes immediately: 

dy, to him j = 4x3i + etc. 

105 

6) The entire remaining development now consists of the 
fact that we have to liberate the ready-made derivative 4x3 from 
its factor & and from its neighbouring terms, to prise it loose 
from its surroundings. So this is no method of development, 
but rather a method of separation . 

e) The differentiation off( x) (as [a J general expression) 
Let us note first of all (d' abord) that the concept of the 

'derived function', for the successive real equivalents of the 
symbolic differential coefficients, which was completely 
unknown to the original discoverers of differential calculus and 
their first disciples, was in fact first introduced by Lagrange. 
To the former the dependent variable, y for example, appears 
only as a/unction of x, corresponding completely to the original 
algebraic meaning of junction, first applied to the so-called 
indeterminate equations where there are more unknowns than 
equations, where therefore y, for example, takes on different 
values as different values are assumed for x. With Lagrange, 
however, the original function is the defined expression of x 
which is to be differentiated; so if y or f(x) = x4 , thenx4 is the 
original function, 4x3 is the first derivative, etc. In order to 
lessen the confusion, then, the dependent y or f(x) is to be 
called the function of x in contrast to the original function in the 
Lagrangian sense, the original function in x , corresponding to 
the 'derived' functions in x. 

In the algebraic method, where we first develop !', the 
preliminary derivative or [the ratio o~ finite differences, and 
where we first develop from it the definitive derivative, f, we 
know from the very beginning: f(x) = y, so that a) L'-.f(x) = 
f'..y, and therefore turned round Lly = !'if(x). What is 
developed next is just L'-.f(x), the value of the finite difference 
off(x). 

We find 
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6.y 6.y 
f'(x) = 6.x , so that 6.x :"' f'(x) . 

And so as well: 

6.y = f'(x)6.x ' 

and since 6.y = 6.f(x ), 

6.f(x) = f'(x)6.x . 

The next development of the differential expression, which 
finally yields 

df(x) = f(x)dx , 

is simply the differential expression of the previously developed 
finite difference. 

In the usual method 

dy or df(x) = .f(x)dx 

is not developed at all, rather instead, see above, the .f(x) 
provided ready-made by the binomial (x + 6.x) or (x + dx) is 
only separated from its factor and its neighbouring terms. 

Taylor's Theorem, 
MacLaurin's Theorem and 

Lagrange's Theory 
of Derived Functions 

107 
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1. FROM THE MANUSCRIPT 'TAYLOR'S 
THEOREM, MACLAURIN'S THEOREM, AND 

LAGRANGE'S THEORY OF DERIVED 
FUNCTIONS'73 

I 

Newton's discovery of the binomial (in his application, also 
of the polynomial) theorem revolutionised the whole of algebra, 
since it made possible for the first time a general theory of 
equations. 

The binomial theorem, however- and this the mathemati
cians have definitely recognised, particularly since Lagrange
is also the primary basis (Hauptbasis) for differential calculus. 
Even a superficial glance shows that outside the circular func
tions, whose development comes from trigonometry, all diffe
rentials of monomials such as xm, ax, log x, etc. can be 
developed from the binomial theorem alone. 74 

It is indeed the fashion of textbooks (Lehrbuchsmode) now
adays to prove both that the binomial theorem can be derived 
from Taylor's and MacLaurin's theorems and the converse. 75 

Nonetheless nowhere- not even in Lagrange, whose theory of 
derived functions gave differential calculus a new foundation 
(Basis) -has the connection between the binomial theorem 
and these two theorems been established in all its original 
simplicity, and it is important here as everywhere, for science to 
strip away the veil of obscurity. 

Taylor's theorem, historically prior to that of MacLaurin's, 
pro\' ides- under certain assumptions- for any function of x 
Y'i:hich increases by a positive or negative increment h )7 () there
fore in general for j( x ±h 1, a series of symbolic expressions 
indicating by what series of differential operations .f(x ±h) is to 
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110 MATHEMATICAL MANUSCRIPTS 

be developed. The subject at hand is thus the development of an 
arbitrary function of x, as soon as it varies. 

MacLaurin on the other hand -also under certain assump
tions - provides the general development of any function of x 
itself, also in a series of symbolic expressions which indicate 
how such functions, whose solution is often very difficult and 
complicated algebraically, can be found easily by means of 
differential calculus. The development of an arbitrary function 
of x, however, means nothing other than the development of the 
constant functions combined with [powers o~ the independent 
variable x, 77 for the development of the variable itself should be 
identical to its variation, and thus to the object of Taylor's 
theorem. 

Both theorems are grand generalisations in which the diffe
rential symbols themselves become the contents of the equ
ation. In place of the real successive derived functions of x only 
the derivatives are represented, in the form of their symbolic 
equivalents, which indicate just so many strategies of oper-

. ations to be performed, independently of the form of the func
tion off(x +h). And so twoformulaeareobtained which with 
certain restrictions are applicable to all specific functions of x 
or x+ h. 

Taylor's Formula: 

f(x+ h) or y, 

dy d2y h2 d3y h 3 d"y h4 

= y + dx h + dx 2 I. 2 + dx 3 1. 2. 3 + dx4 l. 2. 3. 4 + etc ' 

MacLaurin's Formula: 

f(x) or y = 

,dy. x ,d2y. x 2 ,d3y . x 3 
, . d"y x4 

= (vl+ 1-1-+ r-!--+ 1-:--,J--·-,- i--1;--·--
. •dx'l 'dx'·J.2 dx"i.2.3 dx' 1.2.3.4 

+ etc. 

...........__ 
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The mere appearance here shows what one might call, both 
historically and theoretically, the arithmetic of differential cal
culus, that is, the development of its fundamental operations is 
already assumed to be well-known and available. This should 
not be forgotten in the following, where I assume this acquain
tance. 

II 

MacLaurin's theorem may be treated as a special case of 
Taylor's theorem. 

With Taylor we have 

Y = f(x), 

dy I d2y 
y 1 = f(x + h) = f(x) or y + dx h + 2 dx 2 h

2 + etc. 

+ [ l.Z./ .. nJ;7n h"+ etc. 

If we set x= 0 inf(x + h) and on the right-hand side as well, 
in y or f(x) and in its symbolic derived functions of the form 

~' ~?, etc., so that they consist simply of the development 

of the constant elements of x / 8 then: 

dy d2y h2 d3y h' 
f(h) = (\') + (ax)h+ (dx 2 ) u+ (dx3 l 1.2.3+ etc. 

Y 1 = f(x +h) = f(O +h) then becomes the same function of h 
whichy = f(x) is of x; since h goes into f(h) just as x goes into 

f(x) and (y) into i ~~ ), all trace of x is wiped out. 

We therefore can replace h with x on both sides and then 
obtain: 
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dy d'y x2 

f(x) = (y) or f(O)+ (ax)x+ (axz) r:z+ etc. 

+ ( d"y)_x" 
dx" - - - +etc. 

.n 

Or as others have written it, 

2 3 
f(x) =f(O)+f'(O)x+f'(O) 1 ~2 +f"'(O).: _+etc. 

such as for example in the development of f(x) or (c + x)m: 

(c + O)m = /(0) =em, 

m(c + O)m-1x = mcm-1x = f'(O)x etc. 

In the following, where we come to Lagrange, I will no longer 
consider MacLaurin's theorem as merely a special case of Tay
lor's. Let it only be noted here that it has its so-called 'failures'* 
just like Taylor's theorem. The failures all originate in the 
former in the irrational nature of the constant function, in the 
latter in that of the variable. 79 

It may now be asked: 
Did not Newton merely give the result to the world, as he 

does, for example, in the most difficult cases in the Arithmetica 
Universalis, having already developed in complete silence Tay· 
lor's and MacLaurin's theorems for his private use from the 
binomial theorem, which he discovered? This may be answered 
with absolute certainty in the negative: he was not one to leave 
to his students the credit (Aneignung) for such a discovery. In 
fact he was still too absorbed in working out the differential 
operations themselves, operations which are already assumed 
to be given and well-known in Taylor and MacLaurin. Besides, 
Newton, as his first elementary formulae of calculus show, 
obviously arrived at them at first from mechanical points of 
departure, not those of pure analysis. 

* In English in quotes in rhe original- Trans. 
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As for J:aylor and MacLaurin on the other hand, they work 
and operate from the very beginning on the ground of diffe· 
rential calculus itself and thus had no reason (Anlass) to look for 
its simplest possible algebraic starting-point, all the less so since 
the quarrel between the N ewtonians and Leibnitzians revolved 
about the defmed, already completed forms of the calculus as a 
newly discovered, completely separate discipline of mathema
tics, as different from the usual algebra as Heaven is wide (von 
der gewohnlichen Algebra himmelweit verschiednen ). 

The relationship of their respective starting equations to the 
binomial theorem was understood for itself, but no more than, 
for example, it is understood by itself in the differentiation of xy 

or~ that these are expressions obtained by means of ordinary y . 

algebra. 
The real and therefore the simplest relation of the new with 

the old is discovered as soon as the new gains its final form, and 
one may say the differential calculus gained this relation 
through the theorems of Taylor and MacLaurin. Therefore the 
thought first occurred to Lagrange to return the differential 
calculus to a firm algebraic foundation (auf strike algebraische 
Basis). Perhaps his forerunner in this was John Landen, an 
English mathematician from the middle of the 18th century, in 
his Residual Analysis. Indeed, I must look for this book in the 
[British] Museum before I can make a judgement on it. 

III. Lagrange's Theory of Functions 

Lagrange proceeds from the algebraic basis (Begriindung) of 
Taylor's theorem, and thus from the most general formula of 
differential calculus. 

It is only too noticeable with respect to Taylor's beginning 
equation: 

y, orf(x+h)=y orf(x)+Ah+BF+Ch3 +etc. 

l) This series is in no way proved;J(x + h \ is no binomial of 
a defined degree; f(x + h) is much more the undefined general 
expression of any function I of the variable' x which increases 
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by a positive or negative increment h; f(x + h) therefore 
includes functions of x of.any defined degree but at the same 
time excludes any defined degree to the series expansion itself. 
Taylor himself therefore puts '+ etc.' on the end of the series. 
However, that the series expansion which is valid for defined 
functions of x containing an increment - whether they are 
capable of representation now in a finite equation80 or an infi
nite series - is no longer applicable to the undefined general 
f(x) and therefore equally well to the undefined generalf(x 1 ) 

or f(x + h), must first be proved. 
2) The equation is translated into the language of differentials 

by virtue of the fact that it is twice differentiated, that is, y 1 
once with respect to h as variable and x constant, but then 
again with respect to x as variable and h constant. In this 
manner two equations are produced whose first sides are iden
tical while their second sides are different in form. In order, 
however, to be able to equate the undefined coefficients (which 
are all functions of x) of these two sides, it is also necessary to 
assume both that the individual coefficients A, B, etc., are 
undefined, tQ be sure, but finite quantities, and that their accom
panying factors h increase in whole and positive powers. 81 If it is 
assumed - which is not the case - that Taylor had proved 
everything for f(x + h) as long as the x inf(x) remains general, 
then for that very reason it would not be valid at all as soon as 
the functions of x took on definite, particular values. This 
could be on the contrary irreconcilable with the treatment, by 
means of its series, 

- dy d'y 2 
Y1 -y+ dxh+ dx2 h +etc. 

In one word, the conditions or assumptions which are 
involved in Taylor's unproven beginning equation are naturally 
found also in the theorem derived from it: 

- ' dy d 2y ' 
Y 1 - Y -· ~ h 1 ·-- h 2 ., etc. 

dx dx 2 

It is therefore inapplicable to certain functions of x which 

THEOREMS ll5 

contradict ·any of the assumptions. Therefore the so-called 
failures of the theorem. · 

Lagrange provided an algebraic foundation for the beginning 
equation (begriindet die Ausgangsgleichung algebraisch) and at the 
same time showed by means of the development itself which 
particular cases, due to their general character, that is, con
tradicting the general, undefined character of the function of x, 
are excluded. 

H) I) Lagrange's great service is not only to have provided a 
foundation in pure algebraic analysis for the Taylor theorem 
and differential calculus in general, but also and in particular to 
have introduced the concept of the derived function, which all 
of his successors have in fact used, more or less, although 
without mentioning it. But he was not satisfied with that. He 
provides the purely algebraic development of all possible func
tions of (x + h) with increasing whole positive powers of h and 
then attributes to it the given name (Taufname) of the diffe
rential calculus. All the conveniences and condensations (Tay
lor's theorem, etc.) which differential calculus affords itself are 
thereby forfeited, and very often replaced by algebraic oper
ations of much more far-reaching and complicated nature. 

2) As far as pure analysis is concerned Lagrange in fact 
becomes free from all of what to him appears to be metaphysical 
transcendence in Newton's fluxions, Leibnitz's infinitesimals 
of different order, the limit value theorem of vanishing quan-

tities, the replacement of ~ ( = ¥x) as a symbol for the diffe

rential coefficient, etc. Still, this does not prevent him from 
constantly needing one or another of these 'metaphysical' rep
resentations himself in the application of his theories and curves 
etc. 
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2. FROM THE UNFINISHED MANUSCRIPT 
'TAYLOR'S THEOREM' 

If therefore in Taylor's theorem82 1) we adopt the idea from a 
specific form of the binomial theorem in which it is assumed that 
in (x + h)m m is a whole positive power and thus also that the 
factors appear ash= h0

, h 1
, h', h3 , etc., that is, that h [is 

raised to a] whole, increasing, positive power, then 2) just as in 
the algebraic binomial theorem of the general form, the derived 
functions of x are defined and thereby finite functions in x. At 
this point, however, yet a third condition comes in. The derived 
functions of x can only be= 0, = + oo, = - oo, just ash 1•1 can 
only be = h-1 or hmm (for example h 112 ) when the variable x 
takes on particular values, x = a, for example. 83 

Summed up in general: Taylor's theorem is in general only 
applicable to the development of functions of x in which x 
becomes = x + h or is increased from x to x 1 if 1) the 
independent variable x retains the general, undefined form x; 2) 
the original function in x itself is capable of development by 
means of differentiation into a series of defined and thereby 
finite, derived functions in x, with corresponding factors of h 
with increasing, positive and integral exponents, so with h 1 , h 2 , 

h3 etc. 
All these conditions, however, are only another expression 

for the fact that this theorem is the binomial theorem with 
whole and positive exponenrs, translated into differential Jan· 
guage. 

\Vhere these conditions are not fulfilled, where Taylor's 
theorem is no! apphcablc, that is: there enter \vhat are called in 
differential cclculus the 'fmlures "* of this theorem. 

* In English in original~ Ed. 
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The biggest failure of Taylor's theorem, however, does not 
consist of these particular failures of application but rather the 
general failure, that 

y = f(x) [and] y 1 = f(x +h) , 

which are only symbolic expressions of a binomial of some sort 
of degree,84 are transformed into expressions where f(x) is a 
function of x which includes all degrees and thereby has no 
degree itself, so that y 1 = f(x + h) equally well includes all 
degrees and is itself of no degree, and even more that it becomes 
the undeveloped general expression of any function of the 
variable x, as soon as it increases. The series development 
into which the ungraded f(x + h) is expanded, namely 
y + Ah + Bh 2 + Ch3 + etc., therefore also includes all degrees 
without itself having any degree. 

This leap from ordinary algebra, and besides by means of 
ordinary algebra, into the algebra of variables is assumed as 
un fait accompli, it is not proved and is prima facie in contra
diction to all the laws of conventional algebra, where y = f(x), 
y 1 = f(x +h) could never have this meaning. 

In other words, the starting equation 

Y1 or f(x+ h)= y or f(x) + Ah+ Bh' + 
+ Ch' + Dh4 + Eh 5 + etc. 

is not only not proved but indeed knowingly or unknowingly 
assumes a substitution of variables for constants, which flies in 
the face of all the laws of algebra - for algebra, and thus the 
algebraic binomial, only admits of constants, indeed only two 
sorts of constants, known and unknown . The derivation of this 
equation from algebra therefore appears to rest on a deception. 

Yet now if in fact Taylor's theorem - whose failures in 
application hardly come into consideration, since as a matter of 
fact they are restricted to functions of x with which dif· 
ferentiation gives no result85 and are thus in general inac
cessible to treatment by the differential calculus.- has proved 
to be in practice the most comprehensiYe, most general and 
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most successful operational formula (Operationsformel) of all 
differential calculus; then this is only the crowning of the 
edifice ofthe Newtonian school, to which he belonged, and of 
the Newton-Leibnitz period of development of differential cal
culus in general, which from the very beginning drew correct 
results from false premises. 

The algebraic proof of Taylor's theorem has now been given 
by Lagrange, and it in general provides the foundation (Basis) 
of his algebraic method of differential calculus. On the subject 
itself! will go into greater detail in the eventual historical part of 
this manuscript. •• 

As a lusus historiae [an aside in the story] let it be noted here 
that Lagrange in no way goes back to the unknown foundation 
for Taylor- to the binomial theorem, the binomial theorem in 
the most elementary form, too, where it consists of only two 
quantities, (x + a) or here, (x + h), and has a positive expo
nent. 

Much less does he go back further and ask himself, why the 
binomial theorem of Newton, translated into differential form 
and at the same time freed of its algebraic conditions by means 
of a powerful blow (Gewaltstreich), appears as the com
prehensive, overall operational formula of the calculus he 
founded? The answer was simple: because from the very begin
ning Newton sets x 1 - x = dx, so that x 1 = x + dx. The 
development of the difference is thus at once transformed into 
the development of a sum in the binomial (x + dx) -whence 
we disregard completely that it had to have been set x 1 - x = 
!:!.x or h (so that x 1 = x + !:!.x or = x +h). Taylor only 
developed this fundamental basis to its most general and com
prehensive form, which only became possible once all the fun
damental operations of differential calculus had been dis-

covered; for what sense had his :~, :~, etc. unless one 

could already develop the corresponding ~· ~~, etc. 

for all essential functions in x? 

Lagrange, conversely, bases himself directly on Taylor's theorem 

l. 

THEOREMS 119 

(schliesst sick direktan Taylor's Theorem an), from a standpoint, 
natnrally, where on the one hand the successors of the 
Newton-Leibnitz epoch already provide him with the corrected 
versionofx 1 - x =dx,sothataswelly 1 - y =f(x +h)- f(x), 
while on the other hand he produced, right in the algeb
raicisation of Taylor's formula, his own theory of the derived 
function. [In just such a manner Fichte followed Kant, Schel
ling Fichte, and Hegel Schelling, and neither Fichte nor Schel
ling nor Hegel investigated the general foundation of Kant, of 
idealism in general: for otherwise they would not have been able 
to develop it further J 
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ON THE AMBIGUITY OF THE TERMS 'LIMIT' 
AND 'LIMIT VALUE'87 

I) x3 ; 

a) (x + h )3 = x3 + 3hx2 + 3h2 x + h3 ; . 

b) (x + h) 3 - x3 = 3x 2 h + 3xh' + h3 ; 

) (x + h)3- x3 3 2 3 h h2 
C h = X + X + 

If h becomes = 0 , then 

(x + 0) 3 - x 3 

0 
x 3

- x 3 0 dy 
or =-or-

O 0 dx 

and the right-hand side = 3x2 , so that 

dy = 3x' 
dx 

y = x3; Y1 = xl; 

y,-y =xl-x3 = (x 1 -x) (x1+x 1x+x2 ); 

y,- y 
x 1 - x 

or dy = x2 + xx + x 2 

dx 

d:Y = 3x' 
dx 

!23 
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II) Let us set x 1 - x =h. Then: 

!) Cx1- x) (xf + x1x+ x 2 ) = h(xt + x 1x+ x 2 ) 

2) so that: 

Y1-Y =xf+x1x+x2 
h 

In !) the coefficient of h is not the completed derivative, like f' 
above, but rather f'; the division of both sides by h, there-

fore, also leads not to ;t, but rather 

L::.y or 
h 

L::.y 
-= 2 L::.x x,-+x 1x+x2 

etc., etc. 
If we begin on the other side in I c), namely in 

f(x+h)-f(x) or Y1-y=3x2+3xh+h2 
h h 

from the assumption that the more the value of h decreases on 
the right-hand side, so much the more does the value of the 
terms 3xh + h2 decrease,S8 so that the value as well of the 
entire right-hand side 3x2 + 3xh + h2 more and more closely 
approaches the value 3x 2 , we then must set down, however: 'yet 
without being able to coincide with it'. 

3x2 thus becomes a value which the series constantly 
approaches, without ever reaching it, and thus, even more, 
without ever being able to exceed it. In this sense 3x 2 becomes 
the limit value 89 of the series 3x 2 + 3xh + h2 • 

On the other side the quantity y,- Y i or :Y!- Y 1 also 
fi 1 Xt- X; 

decreases all the more, the more its denominator h decreases, 90 

Since. however. J_'l_ ~-~~ is the equivalent of 3x 2 
_J. ?,),h---"-- h 2 

. h 

the lirnit \1alue of the series is also the ratio's own lim if ralue in 
the same sense that it is the limit \'alue of the equivalent series. 
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However; as soon as we set h = 0, the terms on the right-hand 
side vanish, making 3x2 ·the limit of its value; now 3x2 is the 
first derivative of x 3 and so= f'(x). Asf'(x) it indicates that an 
f"(x) is also derivable from it (in the given case it= 6x) etc., 
and thus that the incrementf'(x) or 3x2 is not= the sum of the 
increments which can be developed from f(x) = x3 • Were f(x) 
itself an infinite series, so naturally the series of increments 
which can be developed from it would be infinite as well. In this 
sense, however, the developed series of increments becomes, as 
soon as I break it off, the limit value of the development, where 
limit value here is in the usual algebraic or arithmetic meaning, 
just as the developed part of an endless decimal fraction 
becomes the limit of its possible development, a limit which is 
satisfactory on practical or theoretical grounds. This has abso
lutely nothing in common with the limit value in the first sense. 

Here in the second sense the limit value may be arbitrarily 
increased, while there it may be only decreased. Furthermore 

Y1- Y = Y1- Y 
h x 1 - x 

so long as h is only decreased, only approaches the expression 

~ ; this is a limit which it may never attain and still less ex-

ceed, and thus far ~ may be considered its limit value. 91 

As soon, however, as y, ~ Y is transformed to ~ = k, the 

latter has ceased to be the limit value of y, ~ Y, since the 

latter has itself disappeared into its limiL 92 With respect to its 
' f \' - v 1' -- 'V 0 . . earher ·arm,-.-'--~ or -__ } _ ____::__~ \Ve n1ay only say that - 1S Its 

h X 1- ~- 0 

absolute Jniniinal expression v-.'hich, treated in isolation~ 

' ' f l '\\" ' . ' l 0 dJ h lS no expres~.wn o va ue; 'erlausdmck,;: l1Ut 
0
--=- 1' or-;"'- 1 now as 

dx 

3x' opposite it as its real equinlent' that is rex)' 
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And so in the equation 

0 ( dy 0 or dx) = f'(x) 

neither of the two sides is the limit value of the other. They do 
not have a limit relationship (Grenzverhiiltnis) to one another, but 
rather a relationship of equivalence (Aquivalentverhiiltnis). If I 

have ~ = 2 then neither is 2 the limit of ~ nor is ~ the limit 

of 2. This simply comes from the well-worn tautology that the 
value of a quantity = the limit of its value. 

The concept of the limit value may therefore be interpreted 
wrongly, and is constantly interpreted wrongly (missdeutet). It 
is applied in differential equations93 as a means of preparing the 
way for setting x 1 - x or h= 0 andofbringingthelattercloser 
to its presentation: -a childishness which has its origin in the 
first mystical and mystifying methods of calculus. 

In the application of differential equations to curves, etc., it 
really serves to make things more apparent geometrically. 

i 
j_ 

COMPARISON OF D'ALEMBERT'S METHOD TO 
THE ALGEBRAIC METHOD 

Let us compared' Alembert's method to the algebraic one. 94 

I) f(x) or y = x 3 ; 

a) f(x+ h) or y 1 = (x+ h)3 = x 3 + 3x2h+ 3xh'+ h3 ; 

b) f(x+ h)- f(x) or y 1- y = 3x2h + 3xh2+ h3 ; 

c)f(x+~)-f(x) or Y1;Y=3x2+3xh+h2; 

if h = 0: 

0 dy 
d) 0 or dx = 3x2 = J(x) . 

II) f(x) or y = x3 ; 

a) f(x 1 ) or y 1 = x1 ; 

b) f(x 1 )- f(x) or y 1 - y = xl- x 3 

= (x 1 - x)(xi+ x 1x + x 2 ) ; 

c) f(x 1 )- f(x) 
X1- X 

y - y 
or - 1

-- = x~+ x 1 x + x 2 . 
X1- X 

If x 1 becomes= x, then x 1 - x = 0. hence: 

() dy . 0 

d ' (1f \'x 2 + vx· + x·-\ ix 2 1 0 dx · ..-... · ) -· · 

127 
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It is the same in both so far: if the independent variable x 
increases, so does the dependent [variable] y. Everything 
depends on how the increase of x is expressed. If x becomes 
x 1 , then x 1 - x = fu = h (an undefined, infinitely con
tractible but always finite difference). 95 

If fu or h is the increment by which x has increased, then: 
a) x 1 = x+&, but also in reverse b) x+fu or x + h = x1 • 

The differential calculus begins historically with a); with the 
fact, that is, that the difference fu or the increment h (one 
expresses the same thing as the other: the first negatively as the 
difference fu, the second positively as the increment h) exists 
independently next to the quantity x, whose increment it is and 
thus which it expresses as increased, but increased by h. It 
thereby achieves the advantage from the very beginning, that 
the original function of the variables corresponding to this 
general expression, as soon as it increases, is expressed in a 
binomial of a defined degree, and therefore from the very 
beginning the binmnial theorem is applicable to it. Already, in 
fact, we have a binomial on the general, the left-hand, side, 
namely x+& [• such that/(x+&)] or y 1 =etc. 

The mystical differential calculus immediately transforms: 
(x+fu) into 
(x + dx) or according to Newton, x + x. 96 Thereby we have 

also immediately obtained on the right-hand, the algebraic, side 
a binomial in x + dx or x + x which may be treated as an 
ordinary binomial. The transformation from fu to dx or x is 
assumed a priori rather than rejected on mathematical grounds, 
so that later the mystical suppression of terms of the developed 
binomial becomes possible. 

D' Alembert begins with (x +dx) but corrects the expression 
to (x + Lox), alias (x + h); a development now becomes 
necessary in which Lox or h is transformed into dx, but all of 
that development really proceeds (das ist ~u<"h aile Entwicklung, 
di,, 7: .. :irhlich 'Vorgeht). 

Whether it begin falsely with (x + dx) or correctly with 
ix + h), this undefined binomial placed in the given algebraic 

~ 
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function of X transforms into a binomial of a defined degree
such as (x + h )3 now appears in Ia) instead of x3 - and even 
into a binomial in which in the first case dx , in the other case h 
appears as its last term, and also in the expansion as well as 
merely a factor to which the functions derived from the bino
mial are externally attached (behaftet). 

Therefore we find right in Ia) the complete first derivative of 
x', namely 3x 2

, as the coefficient in the second term of the 
series, attached to h. 3x2 = f( x) remains unchanged from now 
on. It is itself derived by means of no sort of process of dif
ferentiation at all but rather provided from the very beginning 
by means of the binomial theorem, indeed because from the 
very beginning we have represented the increased x as a bino
mial, 

x+fu = x + h, 

as x increased by h. The entire problem now consists of uncou
pling not the embryonic but the ready-made f(x) from its 
factor h and from its other neighbouring terms. 

In Ila) in contrast, the increased x 1 enters the algebraic 
function in exactly the same form as x originally entered it; 
x3 becomes xi. The derivative f(x) can only be obtained at 
the end by means of two successive differentiations, and those 
of quite distinct character indeed. 

In equation Ib) the difference f(x +h)- f(x) or y 1 - y 
now prepares the arrival of the symbolic differential coefficient; 
in real terms, however, all that changes is that it moves out of 
second rank into the first rank of the series and therefore makes 
possible its liberation from h. 

In Ilb) we obtain the expression of differences on both sides; 
it has been so developed on the algebraic side that (x 1 - x) 
appears as a factor beside a derived function in x and x 1 which 
was obtained by means of the division of x~ -- x3 by x 1 - x < 

Only the existence of tlH~ diffcrl.'l1~o.'t:: x·i·- x-1 1nade pt)ssible:.- its 
separation into two factors. Since 

xl--x-h, 
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the two factors into which x1- x 3 is resolved may also be 
written h(xi + x 1x + x 2

). This points up a new difference with 
Ib). h itself as the factor of the preliminary derivative is only 
derived by means of the expansion of the difference x1- x 3 · 

into the product of two factors, while h as the factor of the 
'derivative', exists just like the latter in Ia), already complete 
before any difference has been developed at all. That the unde
fined increase from x to x 1 takes the separated form of the factor 
h next to x, is assumed from the very beginning in I), but proved 
(since x 1 - x =h) by means of the derivation in II). Indeed, on 
the one hand h is undefined in I) while on the other hand it is 
already fairly well defined, since the undefined increase of x 
already appears as a separate quantity by which x has increased, 
and thus as such it enters next to it. 

In Ic), f'(x) is now freed of its factor h; we thus obtain on 

the left-hand side y,- Y or f(x +h)- f(x) thus a still finite 
h h ' 

expression of the differential coefficient. On the other side, 
however, we have reached the point where, when we set 
h = 0 in f(x + h)- f(x) and this transforms into Q = dy 

h ' 0 dx' 

we obtain on one side in Id) the symbolic differential coef
ficient and on the other f'(x), which appeared complete already 
in Ia) but now has been freed of its neighbouring terms and 
stands alone on the right-hand side. 

Positive development only proceeds on the left-hand side, 
since here the symbolic differential coefficient is produced. On 
the right-hand side the development consists only of freeing 
.f(x) = 3x2 , already found in Ia) by means of the binomial, 
from its original impediment. The transformation of h into 0 
or x 1 - x = 0 has only this negati\·e meaning on the right-hand 
side. 

In Tid: by conrrast" ~!pr·rhmi~iO~\'dcl'i'Z~ari-<Y j<; only obtained 
b\' dividing both side' l··'..· Y, - h). 

Finally~ in Jid the :f,:f~ 1 111i~ 1 ,i1J1-:··ati;.•e is 0btrtincJ by the: 
positi\'e setting of\ l - :1. This::;; "" x mean:,:, lJowen:r\ se-.uing 
at the same time x 1 -- ), .== 0, and therefore transforms the 

1\ 

tC · 
;--: 

tl' 
f1 n, 
!,J 
[~ 

~ 
~i 
;·1 
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finite ratio y,- Y on the left-hand side to Qo or ddy • 
X 1 - X · X 

In I) the 'derivative' is no more found by setting x 1 - x= 0 
or h = 0 than it is in the mystical differential method. In both 
cases the neighbouring terms of the f'(x) which appeared com
plete from the very beginning have been tossed aside, now in a 
mathematically correct manner, there by means of a coup 
d'etat. 



ANALYSIS OF D'ALEMBERT'S METHOD BY 
MEANS OF YET ANOTHER EXAMPLE97 

Let us now develop according to d'Alembert's method: 

a) f(u) 98 or y = 3u2 ; 

b) f(x) or u = x3 + ax2 • 

y = 3u2 , (!) 

f(u) = 3u2 (Ia) 

f(u + h) = 3(u + h) 2 , 

f(u +h)- f(u) = 3(u + h) 2 - 3u 2 

= 3u 2 + 6uh + 3h 2
- 3u 2 = 6uh + 3h 2 (2) 

(here is the derived function, already complete in the coefficient of h 
by means of the binomial them·em), 

f(u + h)- f(u) = 6u + 3h . 

f'(u) = 6u, already given complete in (2), is freed of its factor 
h by means of division. 

f(u + 0,! -JS1/_! = 6u . 
0 

(I dr 
-_ :..:_: ()l< 

du 

-- y 
;-dia~~ 

0 if 1-! 

132 
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Substituting in here the value of u from equation b) gives 

dy = 6(x3 + ax2 ) 
du 

Since y in a) is differentiated with respect to u, thus 

Cu1- u) = h or h = (u1- u) , 

since u is the independent variable. 
And so: 

dy = 6(x3 + ax2 ) • 
du 

(This is obtained from f(u) or y = 3u 2 .) 

[We now develop b) in the same manner, so that] 

b) f(x) or u = x 3 + ax2 , 

f(x+h) = (x+h) 3 +a(x+h)2 , 

f(x +h)- f(x) = (x + h) 3 + a(x + h)2 - x3 - ax2 

= x 3 + 3x 2h + 3xh2 + h~ / - x 3 

+ ax2 + 2axh + ah 2 
- ax2 

= (3x2 + 2ax)h + (3x + a)h2 + h3 , 

f(x+ h)- f(x) = 3x 2 + 2ax+ (3x + a)h+ h2 

If we now set h = 0, on the second side: 

0 du 
- or - = 3x 2 + 2ax 
0 dx 

The derived function 1s already contained complete~ how~ 
ever, in 

fCx+ h)= (X+ hJ 3 + a(x+ h) 2 ~ 
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since this produces 

x 3 + 3x 2 h + 3xh 2 + h3 + ax2 + 2axh + ah 2 

Thus 

x3 + ax2 + (3x 2 + 2ax)h + (3x + a)h2 + h3 • 

It already appears complete as the coefficient of h. This deriva
tive is therefore not obtained by means of differentiation, but 
rather by means of an increase from f(x) to f(x + h) and thus 
from x3 + ax2 to (x + h)3 + a(x + h) 2 • It is obtained simply 
by virtue of the fact that when x becomes x + h we obtain a 
binomial in x + h of defined degree on the .second side, a 
binomial whose second term, multiplied (behaftetes) by h·, con
tains the derived function of u, f'(u), ready-made (fix und 
fertig). 

The rest of the procedures serve only to liberate the f(x) 
thus given from the very beginning from its own coefficient h 
and from all other terms. 

The equation 

f(x +h)- f(x) 
h = etc. 

provides two things: first, it makes it possible to obtain the 
numerator on the first side as the difference of f(x), presently 
= 6f(x); on the second side, however, it provides the algeb
raic opportunity to extract the original function given in x, 
x 3 + ax 2

, from the product of (x + h) 3 + a(x + h) 2 etc. 

So we continue. We have obtained for a): 

and 1-or h 

d "\ _ _l = 6(:c' -1- ax-/ 
Ju 

t!l.l 
3x 1 + 2ax . 

dx 

iL__ 
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. dy du 
We muluply - by -, so that 

du dx 

dy du = dy 
du dx dx 

which was to be found. Let us substitute in here the values 

found for ¥. and ~; so that 

dy 
- = 6(x3 + ax2 )(3x2 + 2ax) 
dx 

and therefore, generally expressed, if we have: 

Y = f(u); dy 
du 

hence 

dy 

du 

df(u) 
---

du 

du dy 
- or -
dx dx 

u=f(x); 

df(u) 
= ---

du 

du = df(x) 
dx dx 

df(x) 

dx 

If we now substitute h = u 1 - u into equation a) and 
h = x 1 - x into equation b), things are so arranged that: 

Y or f(u) = 3u 2 , 

f(u+ (u 1 -ul) = 3(u+ (u 1 -u)) 2 

= 3u 2 + 6u(u 1 - u) + 3(u 1 - u? 

fi u -t- ; u 1 - u ': 1 - ft u.) -:::- 3u 2 _.;__ 6u C u 1 -- u ·: 

:.\' u 1 ·-~ if 7< t,' 

h("rJ(. ~' 

u :u 1 u)/ J(u) bv: u ; - u : 3 ~ i.f 1 -- u 
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f(u+ (u1- u))- f(u) _ 
6 

+ 
3
( ) 

- u u 1 - u 
U1- U 

Hence [i~ u 1 - u in the first term = 0, then 

:=6u+0=6u. 

This shows that whenf(u) from the very beginning becomes 
f(u + (u 1 - u)), then its increment appears as the positive 
second term of a defined binomial on the second side, and this 
second term, which is multiplied by (u 1 - u) or h by the 
binomial theorem, immediately becomes the coefficient to be 
found. If the second term is polynomial, as it is in 

x 3 + ax2
, which becomes (x + h)3 + a(x + h) 2 , 

or 

(x + (x 1 - x)) 3 + a(x + (x 1 - x)) 2 , 

then we have only to sum the terms multiplied by x 1 - x to the 
first power, alias h to the first power, as the coefficient of h or 
x 1 - x; and we have again the complete coefficient. 

This result shows: 
I) that when in d' Alembert's development x 1 - x = h is put 

in reverse h = x 1 - x, thereby absolutely nothing is changed in 
the method itself, rather the method simply brings out more 
clearly how to obtain the binomial by means of f(x + h) or 
/(x + (x 1 - x)) for the algebraic expression on the other side in 
place of the original function, in place of 3u 2 for example in the 
g1ven case. 

The second term '.Vhich one finds in tha1m~nmer auarhed tn 
fz or >- 1 --.\_I is the complete firsr dc:rived fnn-._·,inn. The' nrPh
]em nu,,: umsJst~ ot fre-eing l1. of h or x 1 -- ), , whll:h _," 
done. There lhe deriv~.?.d function is e>Jmplc-ll'; 1t 1:, 1llcrcforc not 
found b:_v setting x 1 -- x :::~ 0, but rather freed of its factor 
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(x 1 - x) and accessories. Just as it is found by simple mul
tiplication (the binomial development) as the second term 
[with] x 1 - x, so it is finally freed of the latter by means of 
division of both sides by x 1 - x. 

The crucial procedure (Mittelprozedur ), however, consists of 
the development of the equation 

f(x+ h)- /(x) or f(x + Cx1- x))- f(x) = [· .. J . 

The equation has the sole purpose (Zweck) here of making the 
original function vanish on the second side, since the develop· 
ment [o~ f(x +h) necessarily containsf(x) together with its 
increment developed by means of the binomial. This [f(x)] is 
thus extracted from the second side. 

Therefore what happens, for example, in 

(x+ h) 3 + a(x+ h) 2 - x 3 - ax2 , 

is, that the first terms x3 and ax2 are extracted from the 
binomial (x + h) 3 + a(x + h) 2 ; we thus obtain, multiplied by 
h or (x 1 - x), the already complete derived function as the first 
term of the equation. 

The first differentiation on the second side is nothing but the 
simple subtraction of the original function from its increased 
expression, which thus gives us the increment by which it has 
increased and whose first term, multiplied by h, is already the 
complete derived function. The other terms can only contain 
h2 etc. or (x 1 - x) 2 etc. as coefficients; they are reduced by 
one power with the first division of both sides by x 1 - x, while 
the first term emerges without any h. 

2) The difference from the method of f(x 1 )- f(x) =etc. 
lies in the fact that, when we have for example 

fCt) or u :-::: x 3 + ax 2 

/(x 1 or u i .x~'-! o.Y~ 

tlw iJhTC:rnenl ./Lnn/. h.'··. •Jf tht' "o~n:able x hy no means 
provides U0 \\'ilh f :X> ready~ made from the \'ery beginning. 
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f(x 1)- f(x) or u 1- u = xl + ax! - (x3 + ax2) . 

Here by no means is it a matter of extracting the original 
function again, since xl + ax! does not contain x 3 and ax2 in 
any form. On the contrary, tbis first difference equation pro
vides us with an opportunity for development (Entwick
lungsmoment), namely the transformation of both of the two 
original terms into differences of [powers o~ x 1 and x. 

Namely, 

= (xl- x3) + a(xt- x2) . 

It is now clear that when we again resolve both of these two 
terms into factors of x 1 - x, we obtain functions in x 1 and x as 
coefficients of x 1 - x, namely: 

f(x 1)-f(x) or u1-u = (x 1-x) (x 2+x1x+x2) 

+ a(x 1 - x) (x 1 + x) . 

We divide this by x 1 - x, and the left-hand side as well, so that: 

f(x1)- f(x) or Ut- u 
= (xt+ x 1x + x2) + a(x 1 + x) . 

X1- X X1- X 

By means of this division we have obtained the preliminary 
derivative. Each of its parts contains terms in x 1 . 

Thus we can finally obtain the first derived function in x only 
when we set x 1 = x, so that x 1 - x = 0, and then 

x~ - x2 X 1 X - XJ. 

and thus 

2 :'.,- :--,');] ' ;: ;,_-

',, tlJ d 

,; ):,- )_\{1 
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The result on the other [side] 

df(x) du 0 
--=-=-· 
dx dx 0 

Thus the derived function is here only obtained by setting 
x 1 = x, so that x 1 - x = 0. x 1 = x provides the final positive 
result in the real function of x. 

But x 1 = x also leads to x 1 - x = 0 and therefore at the same 

time, beside this positive result, to the symbolic ~ or i,; on 

the other side. 
We could have said from the very beginning: we have to 

obtain a derivative in x 1 and x in the end. This can only be 
transformed into the derivative in x when x 1 is set= x; but 
setting x 1 = x is the same as setting x 1 - x = 0, which 
nullification is positively expressed by the formula x 1 = x 
which is necessary for the transformation of the derivative to a 
function of x, while its negative form, x 1 - x = 0, must provide 
us with the symbol. 

3) Even if this treatment of x, where an increment (x 1 - x = 
-6.x, for example, or h) is not independently introduced next to 
it, was already well-known, something which is very probable 
and of which I shall convince myself by "consulting J [ohn] 
Landen at the [British] Museum, still its essential difference 
cannot have been grasped. 

What distinguishes this method from Lagrange, however, is 
that it really differentiates, so that the differential expression 
also originates on the symbolic side, while with him the deri
vation does not represent the differentiation algebraically, but 
instead derives the functions algebraically directly from the 
binomial and simply accepts their differential form 'by sym
metry', since it is known from differential calculus that the first 
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APPENDIX I 

Concerning the Concept of 'Limit' 
in the Sources consulted by Marx 

In order to give the reader accustomed to the contemporary use in 
mathematics of the term 'limit' a correct understanding of Marx's 
critical remarks concerning this concept and of Marx's interpretation 
of it, we give first of all the definition of 'limit' (and clarifying 
examples) and the ways of using the word 'limit' contained in the 
courses of Hind and Boucharlat which Marx possessed and studied 
critically. 

Hind's course-book follows d'Aiembert, which is to say that the 
derivative was defined in it by means of the concept of limit. The 
introductory chapter of the book was therefore entitled 'The method 
of limits'. However, neither in this chapter nor in the rest of the 
textbook was there a definition of 'limit'. There were only definitions 
of the 'limits' of a variable in the restricted sense of the exact upper or 
lower bounds to the multiplicity of its value. (This multiplicity might 
include, in particular, an 'infmitely large' value of the variable, desig
nated by the symbol oo. But there were no precisely defined correct 
operations with this symbol: there was no concept of absolute value, 
no + oo and - 00 ; it was considered simply self-evident, that for any 
a ~ 0, oc· + a = oc, that for any finite a (that is, distinct from 0, as 

well as from oo) a .x = x and'!.= 0. I 
X ' 

This concept of the limit of a function- a concept which of course 
can only be surmised from the examples - was introduced in the 
introductory chapter, implicitly, by means: as might be anticipated, 
of identifying this limit (at the point coinciding with the exact upper 
or lower b0unds of the gi\'en multiplicity of the \'alues of the argu" 
rnn1t! with tme of the 'limits' ·:with the ex;::c·1 urpcr or with the f\:3Ct 
1n 1\'t r h,_-·,pn,_1 ·. cf tbe COlTespcnding mulrip)" i:y nf \'cthlt"' of 1hc hn,:
L'l~L ~:mu: \\n]y mn:wtonic !.">r p!CC~\~-i::-.t· mr'rJ(lloni:...· 11Jn(·tic\n:-. ._ire 
n:dnlill('J i:-J 1h:s bonk, ~uch a 'limit' arrear~ in practh:e l<.} he l\"ilh the 
:one-sided 1 limit in the more usual sense of the word~ in whicb I find 

143 



I 
,II'!, 
I, 

I 
t 

'I 1!, 

ill 
'II 
I! I " I!! 
;·i 

l 

144 MATHEMATICAL MANUSCRIPTS 

actually uses the concept of limit in all the remaining parts of the 
book. It turned out, however, that the introduction of this concept, 
which was supposed to 'improve' the method of infinitely small 
quantities, did not consciously attain that goal and was generally 
unwarranted. 

Actually, Hind might have replaced the evaluation of the one-sided 
limit of a piecewise monotonic function f( x) , def"med on the interval 
(a, b) by the solution of the following rwo problems as x moves to 
+a: 

1. To find a certain number a such that for a <x <a the function is 
monotonic (in the broad sense, i.e., non~decreasing or non~ 
increasing; for demonstration we will assume the function is here 
monotonically non-decreasing); 

2. To evaluate the point at the (by onr assumption lower) boundary 
of the possible values of the function on the interval (a, a), that is, for 
a < x < a. Clearly, this will be the desired lim f(x). 

x-.+ a 
But Hind did not proceed in this manner. Following Newton (see 

the appendix 'On the lemmas of Newton cited by Marx') he con
sidered the limit simply the 'last' value of the function of the 'last' 
value of the independent variable. In other words he looked at 

lim f(x) as the point of the lower boundary of the values of the X---7 + tr'' 
function not on the interval a <x<a but on the segment a~x~a. 
He assumed the 'last' valuef(a) to be already defined; but in that case 
all of the above procedure loses meaning, since a may take the value a, 
and to rmd the lower boundary of all possible values of the function, 

. consisting now of only the one f( a) , now becomes that same f( a) . 
This was just what Marx wanted to say, apparently, when he noted, 

obviously having in mind Hind's determination, that it is meaningless 
to treat 3x2 as the limit value of the function 3x2 ash goes to zero, later 
terming such treatment a 'well-worn tautology' (see pp. 124·6 and no tee 
90-92); where he calls generally 'childish' and 'the origin of the first 
mystical and mystifying method of calculus' (see p.l26) the actual 
approach to the limit, the assumption, that the limit value of the 
function is formed as ir.s 'Iast ~value at lhe 'last' valm: of the argument. 

This circumsrance, rha1 the anual arrrnach \(_'; the Emil b:· rw. 
m cc.n >· 1 c:;nl Yt" the diffi cull ies surrt lJ ndi !l[:!' i 11fn_, n d y ·~m , ! : , 'tunr 1 UC::~' 
\-·,:· ':);:)· ·: }-;J;ti..:ularly e','iL.iull in ihc ,·<J~c \',·hen tile L-l' t ,-~uuc of tb, 
indcJ'l'ndent Yariable i~ 'infinily'. So..), in particulllr. if we l'nnsider the 
::requC'ncc :·a 11 ,.j then the limit mmt be 1.har member of rhc series for 
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which n "" oo; so we regard a limit as the end (the last term) of an 
infinite (that is, without an end) series of terms. It is hardly surprising 
that this concept of the 'actual limit' should be no clearer than the 
concept of 'infinitely small quantities' which Marx called 'mystical'. 

As is well known, the definition of the limit of a function, not 
requiring the carrying-out of an infinite number of steps and per
mitting an exact formnlation in terms of only finite variables and 
parameters, gained currency in mathematics only after the time of 
Cauchy, that is, in the 70s of the last centnry. But even at this time the 
authors of many widely-distributed textbooks did not clearly under
stand that the limit was not to be interpreted actually; that even in 
cases where the function is continuous at the point a, that is, the limit 
ofthefunctionf(x) as x -+a is equal to f(a), nevertheless it must be 
shown equal to f(a) on the condition that, no matter how closely x 
approaches a, it never reaches it. · 

With regard to Marx's mathematical manuscripts it is essential for 
us to note, that if the valuef(a) is undefined but the limitf(x) exists 
as x-->a (corresponding to x over the interval (a- k, a+ k)) then we 
may simply predefine the function of f(x) at the point a, f(a ), as that 
limit, by definition. Such a predefinition of the value of the function is 
also a predefinition of continui(JJ. The limit of the function f(x) as 
x--.a would in this case be the value of the already well-defined 
function with x = a. This however does not mean that one may treat 
the value f(a) as the determination of the known single-valued func
tion f(x), but on the contrary only as a quantity at the end of an 
infinite progression no matter how closely x approaches a. Indeed, 
Marx himself obviously had such a predefinition of 'continuity' in 

mind when he called the limit of the expression ~ as 6x --+0, 

the 'absolute minimal expression' of the ratio (see, for example, p. 
125); by this he graphically had in mind the limit of this ratio as 
fu---;.0 under the condition that there exists a certain number a> 

such that for 0<6x<a as & decreases so does the ratio z. By 

means of rl1is definition of a functjon Lacroix works out the example he 

gn'es ·:s(:.e ht'low r-1~·3.", Bul even sc· f;.t_r in the construcrj_on of 
mathematical an::>l--;~,i~: <J'o l.acn'i:>: h;Jd g!l)')(' lh;-~·ond 1he metaphysical 
'principle of co min ui 1 y · nf Leibni r;-.-:, whi..._- L hl.· regarded as a self-e\'idem 
axiom, nonethe]e'-:', be did not considc.J ;ny u1 her definition of function 
generally possible. Regarding r.he fact that .l\1arx quite obviously 
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allowed other means of definition of the ratio ~ as Ay = & = 0, 

see p.l8 and note 18. 

We now give some of Hind's own words which may be necessary in 
reading Marx's manuscripts and from which follow the conclusions 
set out above. 

In his introductory chapter 'On the method of limits' Hind begins 
with definition number one, to wit: 

'By the limits of a quantity allowed to vary in value we intend those 
values, between which are contained all those values which it may 
have throughout all its changes; beyond which it may not extend 
and distinct from which may be made the quantiry; - provided 
that they can be expressed in fmite terms' (that is, without the use 
of the symbols Oand/oroo -S.A. Yanovskaya. See Hind, p.l, our 
italics.) 

With this definition there follows a series of examples, in which, 
however, not once is brought into clear view nor once is demonstrated 
that the 'limit' spoken of by the author actually fulfils the require
ments formulated in Definition One. The first of these examples is the 
following: 

'The quantiry ax, wherein x admits of all possible values from 
zero or 0, to infinity, or oo, becomes 0 in the former case and oo in 
the latter; and consequently the limits of the algebraical expression 
ax are 0 and oo : the first is the inferior, the second the superior 
limit.' (Sic. It is here obviously assumed that a > 0.) 

Already the first example plunges the student into confusion. How 
can the quantity ax be made to differ from the value oo by finite 
quantities, 'a magnitude from which it may be made to differ by 
quantities less than any that can be expressed in finite terms'? Indeed, 
following Hind, when x assumes a finite value the difference oo- ax 
is equal to infinity, but when x = oo, then ax = oo, and the difference 
oo- oo is undefmed. 

In the second example (it is necessary to consider, naturally, the 
values in these conditions of x and a respectively) the lower and 
upper limits of the expression ax+ b are found, appropriately 
enough, at b and infinity. 

In the third example the lower limit of the fraction abx ++ b ,.that is, £ 
x a a 

-
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· is found by simple substitution ofO in the place ofx in the expression, 

and the upper limit, f• by the substitution of oo in place of x in the 

a+! 
equivalent fraction __ x • An explanation of under what conditions the 

b+~ 
X 

values given to a and b respectively appeared actually in the lower and 
upper limits does not accompany the example. There is not even a hint 
of the question of whether if the values are tested they will satisfy the 
adduced definition of 'limits' (to check, for example, that we are 
looking at monotonic functions). The reader is thus pre-'prepared' to 
find a limit to a function through the direct substitution into its 
expression (or into its re-arranged expression in those cases where the 
immediately given continuous expression is devoid of any meaning) of 
the limit value of the independent variable. 

The fourth and the sixth examples, exactly those examples which 
typify point two of the introductory chapter- in which proceeds the 
gradual 'transition' from the concept of inferior and superior limits of 
the function to the more conventional concept of limit and in which is 
revealed the actual character of limit according to Hind - we repro
duce here in full. From them it will become sufficiently clear what a 
jumbled character is attributed to any general account of the concept 
of limit by this author: 

'Example 4: The sum of the geometric series 

a a 
a+-+ 2 + etc. , 

X X 

a(~- 1) ax(!-~) 
1 

1 
x- 1 

X 

now, if n = 0, the inferior limit is manifestly= 0; but if n = oo, 1,; 
X 

becomes 0, and therefore the superior limit is x ':'I; which is usually 

called the sum of the series continued ad infinitum. 
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'Example 6. If a regular polygon be inscribed in a circle, and !be 
number of its sides be continually doubled, it is· evident !bat its 
perimeter approaches more and more nearly to equality wi!b !be 
periphery of !be circle, and !bat at leng!b Ibeir difference must 
become less !ban any quantity !bat can be assigned; hence Iberefore, 
!be circumference of !be circle is !be limit of !be perimeters of !be 
polygons.' (pp.2-3) 

Here one no longer speaks of one of the 'limits' of !be sequence nor 
any more about !be superior of !be limits, as would naturally follow 
from Definition One, but simply of !be limit in !be usual sense. 

'2. To prove that the limits of the ratios subsisting between the sine and 
tangent of a circular arc, and the arc itself, are ratios of equality. 

'Let p and p' represent !be perimeters of two regular polygons of n 
sides, !be former inscribed in, !be latter circumscribed about, a 
circle whose radius is 1, and circumference= 6.28318 etc. = Zn; 
!ben (trig.) 

2n ·" d' 2n " p= sm-,an p = tan-; 
n n 

hence 

" 2n sin- " 
p n=cos~, - = Jt n 
if 2n tan

11 

and if !be value of n be supposed to be indefinitely increased, !be 

value of cos ~ is 1, and therefore p = p'; now, the peri-• 
phery of !be circle evidently lies between p and p', and Iberefore in 
this case is equal to either of them; hence on this supposition, an nth 
part of !be perimeter of !be polygon is equal to an nIb part of !be 
periphery of !be circle: !bat is, 

. " 2n " 2sm-= -= 2tan-, 
n n n 

. Jt .1t :rt 
or sm-=-=tan-, 

n n n 

or !be sine and !be tangent of a circular arc in Ibeirultimate or limiting 
state, are in a ratio of equality wi!b !be arc itself.' (p.3) 

The word 'limit' or 'limits' occurs here ouly in. !be verbal formulation 

' 'I 
j 
1 
J ' 
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of !be Ibeorem, but recalling !bat formulation we see !bat 

one surmises !bat !be reqnirement is to show !be equality of '~ x and 

tanx as x goes to 0. However, Hind's proof can hardly be considered 
X 

satisfactory by• !be standards of his time. Indeed, from !be above 
account it is evident !bat !be au!bor desires to show !bat 

. " ·.n " smn=n=tannasn=oo (1) 

But even here, in order to have cos "'- = 1 when n = oo he already n 

assumes !bat "'- = 0 when n = oo, and Iberefore as well sin ~ = sin 0 = 0 n n 

and tan"'-= tan 0 = 0. That is, in order to prove equation (1)- from 
n 

which, of course, it by no meaJ1$follo)v. by itself !be Ibeorem on !be 

limit of !be ratio sin x as x ---'>0 _: !be assumptions immediately 
X 

preceding !be introduction by !be au!bor of Ibis equation are missing 
completely. 

It remains equally difficult to explain how all Ibis confusing account 
could possibly demonstrate !be superiority of Ibis me!bod of limits, 
literally interpreted, over !be me!bod of infinitely small quantities, in 
Ibis case simply !be identification of an infinitely small segment of !be 
perimeter of !be circle wi!b its chord. 

In Boucharlat's textbook as well (see p.vii) !be me!bod of limits is 
treated as an improvement on !be me!bod of infmitely small quan
tities: 'repairing !bat which may be imperfect in Ibis last'. There is, 
however, no attempt in Boucharlat's course to define what is meant by 
'tends to (such-and-such) a limit' (or how to make certain !bat such
and-such a quantity actually tends toward such-and-such a limit). In it 
!be concept of limit, as well as of 'actual', appears for !be first time in 
evaluating !be derivative of !be function y = x2 • We reproduce here in 
full !bat passage which elicited critical remarks from Marx in his 
manuscript 'On !be ambiguity of !be terms "limit" and "limiting 
value".' 

'By attending to !be second [right-hand] side of equation (2) 

' h2 :L:::.:t. = 3x2 + 3xh + , 
h 

(2) 

we see !bat Ibis ratio is dintinished !be more h is diminished, and 
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that when h becomes 0 this ratio is reduced to 3x2 • This term 3x2 

is therefore the limit of the ratio y' h Y, beiog the term to which 

it tends as we diminish h, 
'Since, on the hypothesis of h = 0, the increment of y becomes 

. also 0, y' ~ Y is reduced to ~, and consequently the equation 

(2) becomes 

0 0 = 3x2 (3) 

'This equation involves in it nothing absurd, for from algebra we 

know that ~ may represent every sort of qu'""tity; besides which.it 

will be easily seen, that since dividing the two terms of a fraction by 
the same number the fraction is not altered in value, it follows that 
the smallness of the terms of a fraction does not at all affect its 
value, and that, <;onsequently, it may not remain the same when its 
terms are diminished to the last degree, that is to say, when they 
become each of them 0 .' (pp .2-3) 

For a correct understanding of the above-mentioned manuscript of 
Marx it is essential to note that in Boucharlat's account the transition 

from the equation of the form~= <!>(x, x) (wherey = f(x)) to 

an equation of the form Z = f'(x) js presented as divided into those 

parts to the left and to the right in the first equation above: from 

~ to ~ and from <l>(x 1 , x) to f'(x) . And the limit of the 

ratio ~ - corresponding to the y, ~ Y of equation (2) - is 

evidently considered equivalent to the expression g, denoted~- So, 

in his determination of the differential of x, having deduced 

the equationY' ~ Y = 1, Boucharlat concludes: 'Since the quantity h 

does not enter into the second side of this equation, we see that to 

pass to the limit it is sufficient to change Y' ~ Y into ;k which 

gives Z = 1, and therefore dy = dx .' (p.6) 

The case where the limit appears equal to zero Boucharlat treats as 
equivalent to the nonenstence of a limit. So;taking the de~vative of 

r it 

!'" 

~ . 
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y = b and obtaining the equation ~ = 0, he concludes, 'so there 

is neither limit nor differential' (p.6). · 

Boucharlat obtains the limit of the ratio ~in x as x->0 in essentially 
' . X 

the same manner as Hind, although in a more intelligible form. He 
proves at first the theorem given as an example in his textbook; that 
'the arc is greater than the sine, and less than the tangent'. (p.24) 
However, he makes no mention of the fact that intmediately follows, 
viz: 

sinx< sinx< sinx (o "') -- -- -- <x<-
tanx x sinx 2 ' 

that is, that the ratio sin x lies between cos x and 1. All this aside, 
X 

following Hind, Boucharlat writes: 

'It follows from the above, that the limit of the ratio of the sine to 
the arcis unity; for since, when the arch ... becomes nothing, the 
sine coincides with the tangent; much more does the sine coincide 
with the arc, which lies between the tangent and the sine; and, 

consequently, we have, in the case of the limit, sin hh or rather 
arc 

si~ k = 1.' (p.29) 

The condition that for h = 0 the ratio si~ h is 'transformed' into~, 

that is, in general, is undefmed, and the conclusion drawn on no more 
grmtnd than 'the sine coincides with the arc' when this last is changed 
into zero, all these embarrass Boucharlat no more than they embarrass 
Hind. 

We have dwelt long enough, obviously, on the treatment of the 
concept of limit in the textbooks of Hind and Boucharlat in order to 
clarify those passages in the manuscript 'On the ambiguity of the 
terms "limit" and "limiting value" ' in which Marx criticised these 
authors' actual transition to the limit, (concerning which see notes 
90-92). 

In order to understand other passages of the manuscripts, and in 
particular Marx's characteristic ratio treatment of the limit, closer to 
the contemporary one, it is advisable to introduce certain opinions 
regarding the concept of limit in other sources with which Marx 
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familiarised himself, first of all the 3-volume Traite of Lacroix on the 
differential and integral calculus, 1810. 

Following Leibnitz, Lacroix considered all sorts of functions obey
ing the requirements of the law of continuity, but considered the 
passage to the limit to be the expression of this law, 'c' est-a-dire de /a /oi 
qui s'observe dans /a description des /ignes par /e mouvement, et d'apres 
/aque//e /es points consecutifs d'une mime /igne se succedent sans aucun 
interval/e.' (p.xxv) ('that is, the law which is observed of lines when 
described by [their] movement, and according to which there is not 
the slightest interval between successive points of the same line'). For 
any such change in the quantity is impossible to understand without 
considering its two different values, between which the interval is 
being considered, since the law of continuity must be expressed in 
terms ofit, that 'plus i/ est petit, plus onse rapproche de /a /oi donti/ s' agit, 
a /aque//e /a limite seu/e convient parfaitement'' (ibid: 'the smaller it 
becomes the more closely it approaches the law which it obeys, to 
which ouly the limit fits with complete agreement'). Lacroix also 
explains that this role of continuity in mathematical analysis seemed 
to him appropriate in order to 'employer /a methode des /imites' (p.xxiv) 
for the construction of a systematic course-book of mathematical 
analysis. 

The concepts 'infinite' and 'infinitely small' Lacroix considers 
determined ouly in a negative sense, that is, as '/'exclusion de tout 
limite, soit en grandeur, soit en petitesse, ce qui n'offre qu'une suite de 
nigations, et ne sourait jamais constituter une notion positive' (p.l9 'the 
exclusion of any limit whether of greatness or of smallness, this only 
offers a series of negations and never rises to constitute a positive 
notion'). And in a footnote on the same page he adds '/'infini est 
necessairement ce dont lin affirme que /es /imites ne peuvent itre atteintes 
par que/que grandeur confevab/e que ce soit,' ('the infinite is necessarily 
that of which one believes its limits cannot be surpassed by any 
conceivable quantity no matter how large'). In other words, Lacroix 
does not accept any acmal infinity: neither an acmal infinitely large 
quantity nor an acmal infmitely small one. 

Lacroix introduces the concept of limit in the following manner: 

'Let there be given a simple function~ in which we suppose x-ra 

x to be augmented positively without end. In dividing the 
numerator and divisor by x the result 

a 

I+!' 
X 
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,,.,<;J.,ariY shows that the function will always remain less than a, but 

will approach that value without a halt, since the part ~ in the 
X 

'<~<ti,nominator diminishes more and more and can be reduced to any 
· of smallness which one would want. The difference bet· 

, , """"" the given fraction and the value a is expressed 

ax a2 
a---=--

x+a x+a' 

'iih~ becomes therefore smaller and smaller as x is larger, and could 
~~#iade less than any given quantity, however small; it follows that the 

. ')'/#/jeri .fraction can approach a as closely as one would want: a is 
'·'·'''-if._,j(_,:_,-·_. 
(,•ftt,\l¢refore the limit of the function,'::' a with respect to the indefinite 

[\~fuerease of x . 
. .· terms which I now am stating comprise the true value 
~s·.·~~hich it is necessary to attribute to] the word limit in order to 
~l';ciinderstand all of what it implies.' (pp.l3·14) 
Oi~f~;z:_;::;~. -_, 
•t.k~eady in Lacroix there is no longer any assumption of a mono

or piecewise monotonic function, and his limit is not, in general, 
.one-sided limit: the variable may approach its limiting value in any 

r whatsoever. In place of the concept of absolute value Lacroix 
:ffiploys, although not consistently, the expression 'value without 
"·•·". the meaning of which, however, remains unspecified. He 
~riJpbasised that the furiction may not only attain its limiting value but 

;j;!J\ general may even pass beyond, to oscillate in its vicinity. But 
'':tRcroix still did not formulate in clear terms the restriction on the 
''Firidependent variable that in its approach to its limiting value a, 

.r.e!ated to the passage to the limit, it is assumed that it does not attain 
that is, that the limit is notto be understood acmally. As long as the 
tction with which he is concerned is continuous, that is, its limits 

,."coincide with the value of the function at the limiting value of the 
. . variable, he expresses himself as would a man who 
';'c. believed that the approach of the independent variable to its limiting 

must in the passage to the limit be completed by reaching that 
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It must also be noted that Lacroix uses the same one word 'limit' for 
the designation of the limit - an end which as we have seen was 
conceived by him in a much more general, more precise way, and 
closer to the contemporary sense than anything in the concepts of the 
textbooks of Boucharlat and Hind which Marx criticised - as he uses 
in several instances for the designation of the limit value as well. 

These lines on the concept of limit in the long treatise of Lacroix
which, as we know, Marx considered his most reliable source of 
information on the fundamental concepts of mathematical analysis, 
such as function, limit etc. -are obviously sufficient to clarify what 
Marx had in mind when he noted briefly regarding the concept of 
limit in Lacroix's treatment, that 'this category, brought into general 
use in [mathematical] analysis largely by Lacroix's example, acquires 
great significance as a replacement for the category "minimal expre
ssion"' (p.68). It is clear, first of all, that Marx actually understood 
what he was doing when he introduced, in dealing with the ambiguity 
of the term 'limit', the concept of the 'absolutely minimal expression', 
in the same se~se as that which we recognise today in the concept of 
limit. Marx foresaw, it is also clear, that with the concept of limit as 
understood by Lacroix we are forced, after completely replacing, 
obviously, the less satisfactory concept of limit, to perform the 
unnecessary introduction of the special - new - concept of the 
'absolutely minimal expression'; in other words, we are faced with the 
necessity of replacing the latter. 

It is probably appropriate, in connection with this same extract 
from the manuscripts of Marx which we are discussing at the moment, 
but also with regard to a variety of other passages of the manuscripts, 
to introduce the words of Lagrange with respect to the concept oflimit 
from the introduction to his Theory of Analytic Functions (Oeuvres 
Lagrange, Vol IX, Paris, 1881). 

Speaking about the attempts by Euler and d' Alembert to regard 
infinitely small differences as absolutely zero, with only their ratios 
entering into calculus, and to see these as the limits of the ratios of 
finite or indefinitely small differences, Lagrange wrote (p.l6): 

'Mais ilfaut convenir que cette idee, quoiquejust en elle-mime, n'est 
pas assez claire paur servir de principe dune science dont la certitude doit 
itre fondle sur. !'evidence, et surtout pour itre presentee aux com
menfants.' ('But it is necessary to admit that this idea, hoWever 
correct in itself, is not at all clear enough to serve as the principle of 
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. a science whose certitude must be founded solely on evidence and 
must above all be preSentable to beginners.') 

Later (p.l8) he remarks, in connection with the Newtonian method 
of the remaining ratios of disappearing quantities, that 

'cette methode a, comme celle des limites dont nous avons parlt! plus 
haut, et qui n' en est propremmt que Ia traduction algebraique, le grand 
inconvenient de considerer les quantites dans l' hat ml elles cessent, pour 
ainsi dire, d'itre quantite, car, quoiqu'on cont;oive toujours bien le 
rapport de deux quantites, tant qu' elles demeurent finies, ce rapport 
n' of/re plus d l' esprit une idee claire et precise aussitOt que ses termes 
deviennentl'un et l' autre nu/s a Ia fois.' ('This method has, like that 
of limits of which we spoke earlier and of which it is only the 
algebraic translation, the great inconvenience of having to consider 
quantities in the state in which they, so to speak, cease to be 
quantities; since however well one understands the ratio of two 
quantities so long as they remain finite, such a ratio no longer 
presents a clear and precise idea to the understanding unless both 
of its terms become zero simultaneously.') 

Lagrange then turned to the attempts of 'the clever English 
geometrician' [John] Landen to deal wi.lb these difficulties, attempts 
which he valued highly, although he considered Landen's method too 
awkward. (See Appendix IV, 'John Landen's Residual Analysis', 
pp.l65-173) 

Of himself, Lagrange wrote that already in 1772 he maintained 'the 
theory of the development of functions into a series containing the 
true principles of differential calculus separate from all consideration 
of infinitely small quantities or of limits'. (p; 19) 

Thus it is clear that Lagrange considered the method of limits no 
more perfect than the method of infinitely small quantities and that 
this was related to his understanding that the limit of which one 
speaks in analysis is understood actually as the 'last' value of the 
function for the 'last' ('disappearing') value of the independent var
iable. 
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APPENDIX II 

ON THE LEMMAS OF NEWTON CITED BY MARX 

On a separate sheet attached to his draft sketch of the course of 
historical development of mathematical calculus, Marx referred to the 
Scholium of Lemma XI of Book One and the Lemma II of Book Two 
of Newton's Principia, devoted to two fundamental concepts used by 
Newton throughout his mathematical analysis, the concept of 'limit' 
and 'moment'. 

In the commentary (scholium) to Lemma XI of the first book to 
Principia mathematica de philosophiae natura/is Newton attempts to 
explain the concept of'ultimate (limiting) ratio' and 'ultimate sum' by 
means of a not very transparent comparison: 'a metaphysical, not 
mathematical assumption,' Marx characterised it. Indeed, Newton 
writes: ..,_ 

'Perhaps it may be objected, that there is no ultimate ratio of 
evanescent quantities; because the ratio before the quantities have 
vanished, is not the ultimate, and when they are vanished, is none. 
But by the sartre argument it may be alleged that a body arriving at a 
certain place, and there stopping, has no ultimate velocity; because 
the velocity, before the body comes to the place, is not its ultimate 
velocity; when it has arrived, there is none. But the answer is easy; 
for by the ultimate velocity is meant that with which the body is 
moved, neither before it arrives at its last place, and the motion 
ceases, nor after, but at the very instant it arrives; that is, that 
velocity with which the body arrives at its last place, and with 
which the motion ceases. And in like manner, by the ultimate ratio 
of evanescent quantities is to be understood the ratio of the quan
tities not before they vanish, nor afterwards, but with which they 
vanish. In like manner the first ratio of nascent quantities is that 
with which they begin to be .. And the first or last sum is that with 
which they begin and cease to be (or to be augmented or 
diminished). There is a limit which the velocity at tile end of a 
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motion may attain, but not exceed. This is the ultimate velocity. 
And there is a like limit in all quantities and proportions that begin· 
and cease to be.' (Sir Isaac Newton's Mathematical Principles of 
Natural Philosophy, trans!. Andrew Motte, rev. Florion Cajori, 
Berkeley, Univ. of Calif. Press, 1934, pp.38-39) 

In present-day mathematics 'the velocity of a body at the given 
moment to' is defined with the help of the mathematical concept of 
limit, and the use by science of such a definition may lead to a variety 
of considerations, including those of an ontological character. How, 
ever, the scientific definition of the velocity of a body at a given 
moment by means of a certain limit of the ratio of vanishing quantities 
can serve neither as a demonstration of the existence of such a limit 
nor, a fortiori as a justification for the definition of this limit as 'the 
ratio of the quantities not before they vanish, nor afterwards, but with 
which they vanish,' that is, as some sort of ratio of zeroes, the value of 
which is somehow compared to the speed which a body must have at 
the very moment when it reaches a place where its movement ends. 
Clearly, however, from such a 'definition' it is impossible to extract by 
mathematical calculations any corresponding limit, and we are essen
tially in a logical circle: velocity at the moment t. is factually described as 
a certain limit' the limit' itself, however' is then defined by means of 
the velocity at the moment t0 , the existence of which in this case now 
really seems to be some sort of 'metaphysical, not mathematical, 
assumption'.* 

Lenuna II of the second book of Principia mathematica contains the 
following explanation of the concept of 'moment' (or infinitely small): 

'I understand ... the quantities I consider here as variable and 
indetermined, and increa_sing or decreasing, as it were, by a con
tinual motion or flux; and I understand their momentary incre
ments or decrements by the name of moments; so that the incre
ments·may be esteemed as added or affirmative moments; and the 
decrements as subtracted or negative ones. But take care not to 
look upon finite pa:r:ticles as such. Finite particles are not moments, 
but the very quantities generated by the moments. We are to 
conceive them as the just nascent principles of finite magnitudes. 
Nor do we in this Lemma regard the magnitude of the moments, 

* Consisting in that the reflection is understood as the reflected object: the 
contemplation in our thoughts of the anticipated goals of abstract mathemat
ical concepts is understood as ihe real existence of the ideal object. -Ed. 



I 

i ',I' 

, ,,f I 

158 MATHEMATICAL MANUSCRIPTS 

but their first proportion, as nascent. It will be the same thing if, 
instead of moments, we use either the velocities of the increments 
and decrements (which may also be called the motions, mutations 
and fluxions of quantities), or any finite quantities proportional to 
those velocities.' 

It is natural that this explanation -in which Newton once again 
employs a 'metaphysical, not mathematical assumption', this time 
with respect to the existence of differentials ('moments') - should 
have interested Marx first of all. 

But this lemma might also have attracted his attention insofar as in 
it Newton attempts to show the formula for the differentiation of the 
product of two functions without resorting to the suppression of the 
infinitesimals of higher order. 

This (unsuccessful) attempt proceeds in the following way: Let 

A -ia be the value of the function f(t) at the point t0 , B- ~b 
be the value of the function g(t) at the same point t0 , and a and b 
increments of the respective functions f and g on the interval [t0, t1]. 

(Lower we denote these !¥ and ~ respectively.) Then the increment 
of the product f(t) .g(t) on the segment [t0, t 1] is: 

1)( 1• ( 1 ( 1 (A+la B+zb)- A- 2a) B-zb)• 

that is, Ab + Ba, which Newton also understood as the differential 
('moment') of the derivative of the functions f and g at t0• But here 
Ab + Ba is not f(t0)~ + g(t0)/¥, but 

I · I 
VCto) + J.M)~ + (g(to) + 2~ )!¥ , 

that is, different from f(t0)~ + g(t0)!::.f by the same quantity of 
!::.f.~ whose suppression Newton wanted to avoid. Identifying, 
although implicitly, Ab + Ba withf(t0) ~ + g( to) !::.f, however New
ton in fact employed such a suppression. 

As is apparent from the first drafts of the piece on the differential 
(see, for instance p. 76), Marx at first wanted to elucidate the historical 
path of the development of differential calculus by the use of the 
example of the history of the theorem of the derivative. Therefore it is 
not surprising that Lemma II should have drawn Marx's attention in 
this connection. 

Since the textbooks from whiCh Marx made extracts do not spec
ifically refer to Lemma XI of Book One or Lemma II of Book Two of 
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thePrincipia, there is every reason to believe that Marx selected them, 
having already immediately rejected Newton's work. 

Since the definition of the limit of the ratio of vanishing quantities by 
means of the velocity of a body at a given moment t 0 contains no means 
for the calculation of this limit, Newton actually employs for the 
performance of such calculation, rather than this definition, certain 
hypothetical properties of limits sufficient to reduce the calculation of 
the limits of ratios of vanishing quantities to the calculation of the limits 
themselves, the numerical value of which is supposed to be completely 
and rigorously defined. Newton states these hypothetical properties 
first of all in Lemma I ofthefirst section of Book One of Principia: 'The 
method of first and last ratios of quantities, by the help of which we 
demonstrate the propositions that follow.' In his notes on the history of 
differential calculus Marx refers to this lemma together with the 
scholium to Lemma XI (see pp.75 and 76). 

Lemma I states: 'Quantities, and the ratios of quantities, which in 
any fmite time converge contioually to equality, and before the end of 
that time approach nearer to each other than by any given difference, 
become ultimately equal.' (Newton's Principia revised by Florion 
Cajori, Univ of Calif. Press, 1934, p.29) 

However, in the demonstration of this limit the existence of a limit as 
actually reached at the end of the period of time in question is implicitly 
assumed. Actually, the demonstration is composed of a denial that the 
value of the quantities obtained 'at the end of this time' can be dis
tioguished from each other. 

Thus, limit is always understood by Newton in an actual sense and 
therefore hardly surpasses -in mathematical precision and validity
Leibnitz's actually infinitely small differentials and their corresponding 
moments, which, as is well known, Newton used in practice. 

~ 
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APPENDIX III 

ON THE CALCULUS OF ZEROES 
OF LEONHARD EULER 

In order to understand those places in the manuscripts of Marx at 

which the ratio Z is regarded as a ratio of zeroes, at times equal to 

the value of the derivative of y with respectto x for all values of x and 
at the same time something which can be treated as an ordinary 

fraction - where, for example, the product ~ . : equals the 

'fraction' ~, 'cancelling' the dv's - it is essential to have an 

acquaintance with Euler's attempt to. construct the differential cal
culus as a calculus of zeroes. This attempt deserves interpretation as 
well in view of the fact that Marx specifically refers, in the list of 
literature appended to his first draft of the history of differential 
calculus, to chapter III of Euler's Differential Calculus, and that Marx 
calls Euler's account of the calculus 'rational'. 

The Differential Calculus by the great mathematician and member 
of the St Petersburg Academy of Sciences Leonhard Euler was pub
lished by the St Petersburg Academy in 1755. The basis for this work 
lies in the attempt to regard differentials as at the point of equalling 
zero in quantity, yet at the same time as different from zero: a zero 
with a 'history' of its origin, with various designations (dy, dx 

and so on) and allowed to be evaluated so that the ratio ~ where 

y = f(x), is distinguished by the fact thatitis the derivativef'(x) and 
can be treated as an ordinary fraction. 

Euler undertook this attempt in order to free mathematical analysis 
from the necessiry of treating differentials as actually infinitely small 
quantities with a clearly contradictory character (appearing to be in 
some sense zero and non-zero simultaneously). The assertion that 
'pure reason supposedly recognises the possibility that the thousandth 
part of a cubk foot of substance is devoid of any extent', Euler 
considers 'completely inadequate' (in the sense of 'inadmissible', in 
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. context, see the translation [in Russian] of L. Euler, Differential 
. Calculus. Moscow, Leningrad, 1949, p.90). 

'An infinitely small quantity is no different from a vanishingly 
small one, and thus.exactly equal to zero. This includes the defin
ition of infinitely small differentials according to which they are 
smaller than any given quantity. Acmally, if the quantity is to be so 
small that it is smaller than any possible given quantity, then it 
could not possibly be not equal to zero; or if it is not equal to zero, 
then there is a quantity to which it is equal, contrary to the 
supposition. Thus,if one asks, what is the infinitely small quantity 
in mathematics, we answer, that it is exactly equal to zero. Con
sequently, this removes the mystery which is usually attributed to 
this concept and which for many makes the calculus of infinitely 
small quantities rather suspicious.' (p.91) 

Since the simple identification of the differential with zero did not 
yield the differential calculus, Euler introduces 'various' zeroes, 
establishing for them two types of equality, the 'arithmetic' and the 
'geometric'. In the'arithmetic' senseallzeroesareeqnal to each other, 
and for any non-zero a, a + 0 is always eqnal to a independently of 
the 'sort' of zero which is added to a. In the 'geometric' sense of the 
word, two zeroes are equal only if their 'ratio' is equal to unity. 

Euler did not clarify what he understands by the 'ratio' of two 
zeroes. It is only clear that he attributes to this 'ratio' the usual 
character of a ratio of non-zero quantities and that in practice by the 
ratio of two 'zeroes' - dy and dx -he intends the same as that which 

is expressed in modern mathematical analysis by the term lim t:.y, 
&...a& 

for Euler's theory of zeroes does not free mathematical analysis from the 
necessity of the introduction of the concept of limit (and the difficulties 
attending this concept). 

Since for Euler zero becomes various zeroes (and in the 'geometric' 
sense they are not even eqnal to one another), it is necessary to use a 
variety of symbols. 'Two zeroes', writes Euler, 'may have any 
geometric ratio to each other, while from the arithmetic point of view 
their ratio is the ratio of equality. Therefore, since zeroes may have any 
ratio between them, in order to express these different ratios different 
symbols are used, especially when it is necessary to detertnine the 
geometric ratio between the two different zeroes. But in the calculus of 
infinitely small quantities nothing larger is formed than the ratio of 
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various infinitely small quantities. Unless we employ different signs for 
their designation everything will be an enormous mess and nothing 
wonld be distinguishable.' (p.91) 

If, following this interpretation of dx and dy as 'different' zeroes, 

the ratio of which is equal to f(x), we replace Z = f(x) with 

dy = f(x )dx, then we have an equation the left and right sides of which 
will be equal both in the 'arithmetic' sense and in the 'geometric' sense. 
Actually, the left and right will contain various 'zeroes', but all 'zeroes', 
as already noted, are equal in the 'arithmetic' sense. Only insofar as the 
ratio of dy to dx is completely equal to f(x) -that is, both in the 
'arithmetic' and 'geometric' senses [the ratio ~ : f(x), where 

y = f(x), is considered unity even if f(x) = OJ and if the 'ratio' of 
zeroes is understood correctly as the usual operation of ratio, then we 
have 

dy: f(x)dx = (!) :f(x) = I, 

or, in other words, dy and f(x)dx are also equal in the 'geometric' 
sense. 

Obviously, Marx had in mind just this 'complete' eqnivalence of 

the equation (1i) = f(x) with that of dy = f(x)dx in the sense not 

only of the possibility of transition from each of them to the other but 
also of the treatment of this (and with the strength of this) 'ratio' of 
'differential parts' dy and dx as a usual ratio (as a fraction), whatever 
the quality of the 'differential parts' dy and dx as zeroes ('various' 
zeroes, variously designated), when he transformed the first of these 
equations into the second (see ilnd, p.l47). 

For a more detailed account of the Enler zeroes and a history of the 
ideas related to it the reader may consnlt the article, A.P. Yushkevich 
'Euler und Lagrange uber die Grundlagen der Analysis', in Sam
me/band zu Ehren des 250 Geburtstages Leonhard Eulers, Berlin, 1959, 
pp.224-244. 

Here we are limiting consideration to two considerations of Enler 
which are helpfnl in reading the manuscripts of Marx. The first con
cerns the concept of the differential as the principal part of the incre
ment of the function. This concept, which plays an essential role in 
mathematical analysis, particnlarly in its foundations, Euler introduces 
in the following way: 'Let the increment w of the variable x become 
very small, so that in the expression [for the increment j:::,.y of the 
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function y of x, that is; in] Pw + Qw2 + Rw3 + etc.* the terms 
Qw2 

, Rw3 and all higher orders become so small that in an expression 
not demanding a great degree of precision they may be neglected 
compared to the first term Pw. Then, knowing the first differential 
Pdx, we also know, admittedly approximately, the first difference, that 
will be Pw; this has frequent use in many cases in which analysis is 
applied to practical tasks' (p.l 05, ilnd). In other words, having replaced 
in the differential function y of x (that is, in Pdx, where P is the 
derivative of y with respect to x) the differential dx, equal to zero 
according to Euler, with the finite [non-zero] increm~ll w of the 
variable dx, we obtain the very concept of the differd.tiai as the 
principal part of the increment of the function, the starting point of 
modern-day courses of mathematical analysis. 

The analogous concept of the differential as the principal part of the 
increment of the function is also in the manuscripts of Marx (see the 
account in manuscript 2768, p. 297 [Yanovskaya, 1968] ). 

The second consideration concerns the question of the choice of 
designations specific to differential calcnlus, that is, of differentials and 
derivatives. Here interest arises first of all from the fact that Euler 
interprets tile dot designations of Newton as symbolic of the diffe
rential, but not the derivative. In fact he writes, 'the name "fluxions" 
first used by Newton for the designation of speed of growth, was by 
analogy carried over to the infinitely small increments which a quantity 
assumes when it as it were varies' (p.l03). And similarly later, 'The 
differentials which they [the English] called "fluxions", they marked 
with dots which were placed above the letters, so thatji meant for them 
the first fluxion ofy, ji the second fluxion,y the third fluxion and so 
on.' 

This manner of designation, however, did not satisfy Euler, and he 
continues: 'Although this means of designation depends upon an arbit
rary rule, the designation need not be rejected if the number of dots is 
not large, for they are easily indicated. If, however, it is required 

* The Differential Calculus of Euler begins with the calculus of finite dif· 
ferences and the theorem which states that 'if the variable quantity x assumes 
an incremental value w, then the consequential value of the increment of any 
function of x can be expressed as Pw + Qw2 + Rw3 + ... etc., which 
expression is either fmite or continues infmitely.' (Ibid, p. 103, see also p.61) 
The proof of this theorem is based on the fact that the class of functions 
considered by Euler consists of power functions: polynomials and elementary 
transcendental functions expanded into infinite power series which he treats 
as if they were fmite polynomials -Ed. 
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to write many dots, this method gives rise to a great deal of confusion 
and inconvenience. In fact, the tenth differential, or tenth 

fluxion, is extremely inconvenient to indicate thus: y where by our 
means of designation, d11y is given easily. There arise occasions when it 
is necessary to express differentials of much higher, and even infinite, 
degree; on those occasions the English method of designation is not at 
all appropriate.' (pp. 103-104) 

About the analogous identification (in several instances) by Newton 
and his followers of the 'fluxions' X, Y and so on, with the 'moments' 
(that is, the differentials) <x, <.Y, and so on (where 1: is an 'infinitely 
small period of time') Marx also spoke, when he noted (p. 78) '<plays 
no role in Newton's analysis of the foundations of functions and there
fore may be ignored', and that Newton himself voluntarily neglected 1: 

(loc.cit.). Marx used the same expressions, speaking of the method of 
Newton,as 'the differential ofy ory, of u or zi, of z or z'. (see p.79) 

We must note in addition that Marx printarily emphasised the Leib
nitzian symbology of the differential calculus over the symbology of 
Newton and his followers (see p.94). 

APPENDIX IV 

John Landen's Residual Analysis 

Notice of Marx's intention to acquaint himself with the works of 
John Landen in the British Museum is evident at several places in the 
mathematical manuscripts of Marx (see p.33). 

Marx saw in Landen a possible precursor of Lagrange, attempting 
to 'rebuild on strictly algebraic lines the foundation of differential 
calculus' (p.ll3), and he proposed that the Landen method should be 
compared to the method Marx categorised as 'algebraic dif
ferentiation', but he himself doubted that Landen really understood 
the essential difference between this method and any other. To con
vince himself of the truth of this proposal Marx wanted to study in the 
Museum Landen's Residual Anarysis. 

In the sources available to him Marx could fmd two earlier opinions 
of this book: in Hind's textbook (p.l28, 2nd ed.) and in Lacroix's long 
'Treatise' (Vol.I, pp.239-240) - which are in fact almost identical 
since Hind had essentially translated into English the appropriate 
passage from Lacroix. In Hind we read: 'The notion of establishing 
this kind of calculus [that is, differential calculus] upon principles 
purely algebraical, seems however to have originated with Mr John 
Landen, a celebrated English mathematician who flourished about 
the middle of the 18th century. In what is termed his Residual 
Analysis, the first object is to exhibit the algebraical development of 
the difference of the same functions of the quantities x and x' divided 
by the difference of the quantities themselves, or the devel
opment of the expression A'!- f(x), and afterwards to find what 

X X 

is called the special 7Jalue of the result when x is made = x and when 
therefore all trace of the divisor x- x has disappeared.' (And in 
Lacroix, ' ... and when this quotient [f(x')- f(x))!(x'- x)] is 
obtained in order not to conserve any trace of the divisor x' - x , one 
sets x' = x, since the fmal goal of the calculation is to arrive at a 
special value of the above ratio.') 

Marx apparently did not succeed in his intention to study Landen's 
book in the British Museum. An analysis of the contents of the book, 
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however, completely confirms Marx's expressed opinion, which he 
himself considered 'highly probable'. 

The complete title of the Landen book is 'The ResiduaUna(ysis, a 
new branch of the algebraic art, of very extensive use, both in pure 
mathematics and natural philosophy. Book I. By John Landen. London. 
Printed for the author, and sold by L.Haws, W.Clarkeand R.Collins, 
at the Red Lion in Paternoster Row, 1764.' 

The preface begins with the words: 

'Having some time ago stumbled across a new and easy method of 
investigating the binomial theorem with the help of a purely algeb
raic process, I turned to see whether the means used to investigate 
this theorem might be of service with other theorems, and I soon 
found that a certain type of calculation founded on this method 
may be used in many researches. I call this special method Residual 
Analysis, since in all problems where it is used the basic tools which 
we employ to obtain the desired result are those quantities and 
algebraic expressions which mathematicians call residuals.' 

Later the author criticises the fluxions calculus of Newton and the 
differentials of Leibnitz as based on the introduction into mathema
tics of undefined new 'principles'. Those applied in the calculus of 
fluxions ofN ewton he considers the explanation of the significant new 
terms introduced into the theory, such as the not really existent but 
nonetheless apparent (as self-evident) concepts, imaginary motion and 
graphically continuous flow, which do not belong in any mathematics of 
clear and distinct ideas but do continue to speak for example of such 
things as the speed of time, the velocity of velocity and so on as unneces
sary in the proof (and therefore on the other hand serve as the means of 
definition of several exact mathematical concepts). In the analysis of 
Leibnitz he considers undefmed the introduction, under cover of new 
'principles', of infinite()' small quantities and the quantity infinitely 
smaller than any infinite()' small quantity, the suppression of which 
(when it is not a matter of accepted approximate results) is: 'a very 
unsatisfactory (if not erroneous) method to rid us of such quantities' 
(p.IV). Landen believed that mathematics had no need of such alien 
principles and that his Residual Ana(ysis 'does not require any prin
ciples other than those accepted since antiquity in algebra and 
geometry', 'no less (if not more) in use, than the calculus of fluxions or 
differential calculus' (p.IV). 

The starting-point of residW!l analysis is in the formula 

ar-b~ 
--b- = ar-t+ ar-2b + . . . + br-t a- . (1) 

I 
L 
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(where r is a positive whole number) with the help of which and the 
formulae* derived from it 

W W 2 W m-1 
1'! 1'! m 1+-+-]+ ... +-] 
v'-w' -v'-1 v v v (2) 

- m 2m (r l)m 
r r --

1 + !£] + !£] + . • • + !£] r 
v v v 

-m -m 
v r- w r 

v w 

2 m-1 
I+ !£ + !£) + ... + !£) 

m V V V 
- v-1 w-' (3) 

' m 2m (r-l)m 
w]r w]' w]--,-1+- +- + ... +-v v v 

(where m and r are positive whole numbers), Landen obtains the 
derivative of the power function x• for whole and fractional (positive 
or negative) values of p as a 'special value' of the ratio 

XP- X~ 

X Xt 

at x = x 1 • In other words, he predefmes the ratio xP- xf at x = x 1 x- x1 

as that which fulfils the equality of formulae (1), (2) and (3). 

* In order to show (2) using (l) it is sufficient to note that 

.. .. 
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v -w 
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Formula (3) follows easily from Formula (2) 
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The 'special value' of the ratioY- y,, wherey = f(x) ,y1 = f(xl!, 
x- x1 

at x = x 1 , Landen designates [x- Y]· 
He obtains the transition to the irrational powers in his examples, 

beginning with the determination of the 'special value' of the ratio 
413_ 4/3 . • • 
~ ~ ;: at ., = w (the der1vanve of v413 With respect to ") by two 

different means, one employing formula (2) with m = 4 and r = 3, the 

other by the same formula, but 'since f = 1.333 •. .' using the pairs 

(m = 13,333, r = 10,000), (m = 133,333, r = 100,000), and so on. 
Landen saves himself from the difficulties attending this infinite 
process by remarking that the 'final value' of 

1 + 1 + 1 + 1 + ... (13,333 times) 
1 + 1 + 1 + 1 + ... (10,000 times) 

is obviously equal to ~,the quantity from which [the number] 1.333 

... is derived (p.7). 

Mter this he makes the transition to the case where 7 = ~2 = 

1.4142 ... , treating it by means of the second method, that is, as he 
himself notes, 'approximately', but such that it can in any case be 
made more 'closely approximate', he again concludes that the 'final 
value' of 

1 + 1 + 1 + 1 + ... (14,142 ... times) 
1 + 1 + 1 + 1 + ... (10,000 ... times) 

'is equal to ~2, the value from which [the number] 1.4142 etc. is 
derived (by the taking of the root).' (p.8) 

It is not surprising that Landen cannot construct his Residual 
Ana{ysis without employing in one form or another the concept of 
limit. However, in practice he speaks of the limit from the viewpoint 
of Newton, treating the limit as the 'final value' (as the end) of an 
infinite (that is, without having any end) sequence. Naturally he did 
not in fact use this definition, but he approached by this means an 
approximate evaluation of the point and of the convergence (or 
divergence) of the process of their sequential values, which prompted 
the concrete contents of the question to him. 

Like other mathematicians of his time, Landen considers it poss
ible to employ freely divergent series in formally structured expre
ssions of infinite series if the former only play an intermitt~nt role in 
the construction. If a series had to express the value of some sort of 
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quantity which was subject to calculation, then in order for it to be 
used it had to converge. Landen did not consider it necessary to 
explain precisely what he had in mind for 'convergent' or 'divergent' 
series but instead, having expanded (by means of some sort of for
mative arrangement) the function into a series, he usually points out 
the radius of convergence of the derived series and introduces 
methods by which to 'improve' the convergence (to replace the series 
with another which converges 'more rapidly' to the same limit). 
Landen thus, among the number of 'principles' 'already accepted 
since Antiquity in algebra and geometry', obviously includes some · 
concepts of the passage to a limit, with which he deals in practice 
(when speaking of an approximate calculation, for example). But he 
had no general concept of 'convergence' or 'limit'. Nor did he have 
methods for calculating limits (or proving their non-existence) which 
included a wide variety of classes of functions. Landen therefore 
looked for a definition of the derivative (the 'special value') which 
would contain within itself its own algorithm. 

Just like Newton, he spoke in terms of the function of x as an 
analogue of the concept of real numbers. In detail, just as any real 
number can be regarded as the (finite or infinite) sum of powers to the 
base 10, of which each one is denoted by the figures 0, 1, 2 •.. 9, so 
any function of x, according to Newton, ought to be represented as 
the (finite or infinite) sum of powers of the base x, with each denoted 
by numbers (coefficients)- that is, as a power series. (A series was 
considered 'representing' a certain function given in terms of a finite 
'algebraic' expression if the series is obtained by formal manipula
tion from the given function. So, for instance, the series 
1 + x + x2 + . . . + x• + . . . was considered to 'represent' the func-

tion -
1 

1 since it can be obtained by the division of 1 by 1- x by -x 
means of the division of the polynomial.) The task of finding the 
derivative of the function f(x) could be represented as equivalent to 
the analogous task for the power x 0 and to the task, once knowing the 
derivatives of the elements (orfactors), of finding the derivative of the 
sum. Just these problems Landen solved first of all in his Residual 
Ana{ysis. The extension of these methods into functions of several 
variables and into partial derivatives of various orders, accompanied 
by a host of technical difficulties, Landen dealt with by means of 
occasionally very clever forinal calculations. 

In this it is usually implicitly assumed that the power series cor
responding to the function is single-valued, that is, if two power series 
are to represent one and the same function of x, then the coefficients 
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for each of the powers on them must be equal (hence the widespread 
use of the so-called 'method of undefmed coefficients'). 

As an example illustrating Landen's use of these methods we 
present his proposed (with several more precise definitions in use even 
today) demonstration of the binomial theorem of Newton for the 
general case of a binomial raised to a real exponent. Since Marx 
devoted special attention to this theorem of Newton, primarily with 
respect to the theorems of Taylor and MacLaurin (see for example 
pp.109, 116), Landen's proofmayprovideinterestin this connection. 

Let 

(a+ x)• = A 1 + A,x + A_,x2 + ... , (1) 

where p is any real number and A 1 , A 2 ••• are undefined coef
ficients assiuned to be independent of x . Letting x = 0 on both sides 
of the equation yields A 1 = a•. The differentiation of the complete 
equation (I) with respect to x (Landen, of course, did not speak of the 
derivative with respect to x but of the corresponding 'special value' 
which he had for Ax' where A is independent of x and r is real) 
becomes 

p(a+ x),....1 = A 2 + 2A 3x+ 3A 4x2 +... (2) 

Multiplying equation (1) by p and equation (2) by (a + x) , we obtain 

p(a+ x)• = pA 1 + pA,x+ pA_,x2 + ... , (f) 

p(a + x)• = aA 2 + ~:Jx + ~= ]x2 + ... , (l) 

from which, recalling the assumed single valuation of the expansion of 
the expression p( a + x) • into a series of powers of x , we have 

aA 2 = pA 1 , implies A 2 = p_ A 1 = pa,...., , 
a 

. . p- I p(p- I) 
2aA 3 + A 2 = pA 2 , tmplies A 3 = --za A 2 = 

2 
a,....2 

3aA. + 2A3 = pA 3 , implies A 4 = p~ 2 A, 

P(p -'- I) (p- 2) = a~3 
2.3 , 
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and therefore 

(a+x)• =a•+ga....,+ p(p- I)a,.•x•+p(p- I) (p- 2) ,...., , 
I 1.2 1.2.3 a x 

+ . -· . ' 

which is the binomial theorem of Newton. 
Although the residual analysis of John Landen did not become an 

everyday working instrument among mathematicians - Landen's 
notation was cumbersome and he (perhaps therefore) did not reach 
the theorems of Taylor and MacLaurin - it does not follow that 
Landen's work was generally without influence in the development of 
mathematics. Landen himself writes (p.45) that several of his 
theorems from the Residual Analysis have 'struck the attention of Mr 
De Moivre, Mr Stirling, and other eminent mathematicians'. In his 
Traite (Vol I, p.240) Lacroix agrees that he employs the Landen 
method as an 'imitation a I' algebre' for the proof of the binomial 
theorem and the expansion of exponential and logarithmic. functions 
into a series. Lacroix's textbook enjoyed a widespread popularity 
among mathematicians. 

However, Lacroix's notice was drawn to Landen through the influ
ence of Lagrange, whose Thoiorie des fonctions analytique Lacroix made 
the basis for his Traite. In the introduction of this book, speaking of 
the difficulties remaining in the fundamental concepts of analysis 
according to Newton, Lagrange writes: 'In order to avoid these 
difficulties, a skillful English geometer having made an important 
discovery in analysis, proposed to replace the method of fluxions, 
which until then all English geometricians used consistently, with 
another method, purely analytical and analagous to the method of 
differentials, but in which, instead of employing differences of var
iable quantities which are infinitely small or equal to zero, one uses at 
first the different values of these quantities which are then set equal, 
after having made, by division, the factor disappear which this equal
ity sets equal to zero. By this means one truly avoids the infinitely 
small and vanishing quantities; but the results and the application of 
this calculus are embarrassing and inconvenient, and one must admit 
that this means of rendering the principles of calculus more rigorous 
at the same time sacrifices its principal advantages, simplicity of 
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method and ease of operation.' (In addition to the Residual Ana(ysis 
Lagrange also cites 'the discourse on the same subject published 
... in 1758. See Oeuvres des Lagrange, Vol. IX, Paris, 1881, p.l8). 

The last comment of Lagrange is obviously related to the fact that 
Landen uses an extremely awkward notation and did not obtain the 
differential and the operations with the differential symbols of cal
culus. 

Separate from Lagrange, Lacroix concludes that the method of 
Landen 'reduces essentially to the method of limits' (Traite, p.XVJJ). 

• 

l 

APPENDIX V 

THE PRINCIPLES OF DIFFERENTIAL 
CALCULUS ACCORDING TO BOUCHARLAT 

Of the books of mathematical analysis available to Marx, obviously 
of the greatest significance for the understanding of his manuscripts is 
the textbook ofBoucharlat,Eiementary Treatise on the Differential and 
Integral Calculus, with which Marx was acquainted in the English 
version of the third French edition, translated by Blakelock and 
published in 1828. 

This textbook enjoyed a great popularity and was several times 
reprioted. Its eighth edition with the commentaries of M.H. Laurent, 
saw the light in Paris in 1881. I twas translated into a variety offoreign 
languages, among them Russian. 

Graduate of the Ecole Polytechnique, professor of 'transcendental' 
(higher) mathematics, author of a series of textbooks of mathematics. 
and mechanics, Jean-Louis Boucharlat (1775-1848) was at the same 
time a poet, and since 1823, professor of literature at the Parisian 
Atheneum . 

No doubt his literary accomplishments and clarity of exposition 
were responsible in no small part for the popularity of Boucharlat's 
textbook. It is clear that Marx did not tum his attention accidentally 
to the course-book of Boucharlat. 

All the same, despite the pretentious of the author to great rigour in 
his account and to having perfected the 'algebraic' method of Lag
range by means of the method of lituits (see the introduction to the 
fifth edition, 1838, p.VIJJ) the mathematical level of this course was 
not very elevated. Even in the fifth (of 1838) and not only in the third 
edition, the English translation of which Marx consulted, the con
cepts oflituit, function, derivative, differential are introduced thus:* 

* Marx not only made extracts of this textbook in several of his manuscripts and 
polemicised with the author regarding the foundations of his methodological essay, but 
also invested a great deal of effort in the factual examination of the former. Therefore we 
could hardly do without an acquaintance with the contents of this textbook. Here we 
produce in detail the contents of the first twenty paragraphs of the course ofBoucharlat. 

173 
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'I. One variable is said to be a function of another variable, when 
the f"rrst is equal to a certain analytical expression composed of the 
second; for example, y is a function of x in the following equ
ations: 

y = Ja' x', x' y = x 3
- 3bx2 , y =-, y = b + cx3 • 

a 

'3. Let us take also the equation 

Y = x3 (I) 

and suppose that when x becomes x + h , y becomes y' , we have 
then 

:! = (x + h)3 

or, by expanding, 

y = x3 + 3x2h + 3xh2 + h3 ; 

if from this equation we subtract equation (1) there will remain 

y'- y = 3x2h + 3xh2 + h3 , 

and by dividing by h, 

y'}. y = 3x2 + 3xh + h2 (2) 

'Let us look at what this result teaches us: 
y'- y represents the increment of the function y when x receives 
the increment h , because this difference y - y is the difference 
between the new state of the value of the variable y and its original 
state. 

'On the other hand since the increment of the variable x is h, it 

follows from this that the expression .v' // is the ratio of the 

increment of the function y to the increment of the variable x . 
Looking at the second term of equation (2), we see that this ratio 

Paragraphs which are specific to the course and particularly those towards which Marx 
directed critical remarks are reproduced in full. Passages in the manuscripts for whose 
understanding an acquaintance with these paragraphs is necessary are accompanied by 
citations to the pages of the Appendices on which the contents of the paragraph are 
reproduced. 
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decreases together with the decrease of h and that when h becomes 
zero this ratio is transformed into 3x2 • 

'Consequently the term 3x2 is the limit of the ratio y' }/; it 

approaches this term when we cause h to be decreased. 
'4. Since, in the hypothesis that h = 0 the increment of y also 

becomes zero, then .v' h Y is transformed into ~' and therefore 

there is obtained from equation (2) 

~ = 3x2 (3) 

'There is nothing absurd in this equation, since algebra teaches us 

that g may represent any value at all. On the other hand it is clear 

that since division of both parts of a fraction by one and the same 
number does not change the value of the fraction, we may then 
conclude that the smallness of the parts of a fraction has no effect at 
all on its value, and that consequently it may remain the same 
value, even when its parts attain the last degree of smallness, that 
is, are transformed to zero. 

'The fraction ~ which appears in equation (3) is a symbol which 

has replaced the ratio of the increment of the function y to the 
increment of the variable x; since no trace remains in this symbol 

of the variable, we will represent it by ;Z; then ~ will remind 

us that the function was y and the variable x . But this dy and dx 
will not cease to be zero, and we will have 

dy - 3x' ilic- 0 (4) *' or more precisely its value 3x2
, is the differential coefficient 

of the function y. 

'Let us note that since ~ is the sign representing the limit 3x2 

(as equation (4) shows), dx must always be located beneath dy. 
However, in order to facilitate algebraic operations it is permitted 
to clear the denominator in equation ( 4), and we obtain dy = 
3x2dx. This expression 3x2dx is called the differential of the func
tion y .' (pp.l-4) 

In §§ 5-8 Boucharlat f"mds dy in the examples 
1- x3 

y =a+ 3x2
, y = -

1
--, y = (x2 - 2a2 ) (x2 - 3a2 ) • 
-x 
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In all these cases the expression for the increased value of y, that is (in 
Boucharlat'snotation)fory', is equal to.f(x +h) -ify = .f(x) -and 
is represented in the form of a polynomial, expanded in powers of h 

(with coefficients in x), after which the ratio y' h Y is easily represen

ted as a polynomial of the same type. Setting h = 0 in this ratio gives 

1x, and multiplication by dx completes the search for the exp

ression for the differential dy. 

'9. The expression dx is itself the differential of x; let y = x, 
then y' = x + h, consequently y'- y = h, and then 

y' ~ Y = I . Since the quantity h does not even enter the second 

term of this equation, it is enough to change y' -,Y to : which 

will give ~ = 1; consequently, by our hypothesis, dy = dx. 

'10. We fmd in the same way that the differential of ax is adx; 
but if we had y = ax + b we also would have obtained adx for the 
differential, whence it follows that the constant b, unaccompanied 
by the variable x, provides no term at all upon differentiation or, in 
other words, has no differential at all. 

'In addition one may note that if y = b, then in the case before 
us, where a is zero in the equation y = ax+ b and where 

therefore ~ = a is now reduced to ~ = 1, there is neither 

limit nor differential.' (p.6) 

We see from the above that according to Boucharlat: 
I) There is neither a definition of limit, nor of derivative or 

differential. All these concepts are explained ouly in examples, and 
only such that the ratio f(x +h)- f(x) is represented as a polynomial 

expanded in powers of h, with coefficients in x. The evaluation of the 
limit of this ratio as h -->0 is treated as the supposition that h = 0 in the 
obtained polynomial. Here questions whether there exist other cases, 
whether in such cases it is possible to 'differentiate', and if so, how, do 
not even arise. 

2) The passage from the derivative ~ = <p(x) to the differential 

dy = <p(x )dx is regarded as an unlawful operation, carried out only in 
order to 'facilitate' algebraic calculation. • 
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3) From the fact that for h ;h 0 

f(x +h)- f(x) = ( h) <p x, , (A) 

is drawn the conclusion that for h = 0, that is, when f(x + h k- f(x) 

loses all meaning, (is transformed into g), equation (A) retains sig

nificance, that is, we should obtain 

0 
jj = <p(x ,0) . (JJ) 

In other words, it is considered <p(x, h) should be defined (and 
continuous) for h = 0 and that equation (B) follows logically from 

equation (A) -although the expression g is without meaning. 

4) The limit or differential equalling zero is rationalised as indi
cating that 'there is neither limit nor differential' although at the same 
time dy and dx are always zeroes (if <p(x) ,0 0, then the differential, 
equal to <p(x) . 0, exists, if <p(x) = 0, then it doesn't). 

It is not surprising that such a treatment of the fundamental con
cepts of the differential calculus did not satisfy Marx. And in fact the 
first of his outlines of the opening paragraph of the course-book of 
Boucharlat (see p.65 of the present edition) contains critical remarks 
concerning that author. But Marx was displeased in particular with 
the fact that the fundamental concept of differential calculus - the 
concept of the differential - appeared Without foundation and its 
introduction justified only because it 'facilitates algebraic operations'. 
(see the manuscript 'On the Differential', p.IS). 

In §11 of Boucharlat's book the remark is made, 'sometimes the 
increment of the variable is negative; in that case we must put x- h 
for x , and proceed as before'. In the example y = - ax3 by this means 
is obtained dy = - 3ax2dx, and the conclusion drawn: 'We see that 
this comes to the same thing as supposing dx negative in the diffe
rential of y calculated on the hypothesis of a positive increment.' But 
for Boucharlat dx is 0. The question of the meaning of 'negative zero' 
never came into his head, however. (In the works of this period there 
was still no general concept of 'absolute value'.) 

Since the following three paragraphs,§§ 12-14, are particularly 
characteristic of Boucharlat's course-book and since they are related 
to a variety of passages in the manuscripts of Marx, the text of these 
paragraphs is reproduced here in full. 

" 
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'12. Before proceeding further, we must make one essential 
remark; viz., that in an equation, of which the second side is a 
function of x, and which for that reason, we will represent gen
erally by y = f(x), if on changing x into x + h, and arranging the 
terms according to the powers of h , we find the following 
development: 

y' =A+ Bh + Ch 2 + Dh3+ etc., (C) 

we ought always to have y = A . 
'Forifwemake h = 0, thesecondsideisreduced to A. In regard 

to the first side, since we have accented y only, to indicate that y 
has undergone a certain change on x becoming x + h, it follows 
necessarily, that when h is 0, we must suppress the accent of y and 
the equation will be reduced then to 

y=A. 

'13. This will give us the means of generalising the process of 
differentiation. For, if in the equation y= f(x) in which we are 
supposed to know the expression represented by f(x), we have put 
x + h in place of x; and after having arranged the terms according 
to the powers of h, are able to obtain the following development: 

y' = A + Bh + Ch2 + Dh3 + etc. 

or rather, according to the preceding article, 

we shall have 

therefore 

y' = y + Bh + Ch'+ etc., 

y'- y = Bh + Ch2 + etc. , 

y'- Y = B+ Ch+ 
h etc. 

and taking the lintit, ;i = B; ~hich shows us that the differ

ential coefficient is equal to the coefficient of the term which 
contains the first power of h, in the development of f(x + h), 
arranged according to ascending powers of h . 

'14. If instead of one function y, which changes its value in 
consequence of the increment given to the variable x which it 
contains, we have two functions, y and z, of that same variable x, 
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and we know how to find separately the differentials of each of 
these functions, it will be easy, by the following demonstration; to 
determine the differential of the product zy of these functions. For 
if we substitute x + h in place of x, in the functions y and z, we 
shall obtain two developments, which, being arranged according to 
powers of h, may be represented thus, 

y' = y + Ah + Bh2 + etc. , 

z' = z+ A'h + B'h2 + etc. 

Passing to the lintit, we shall find 

dy =A 
dx ' 

dz=A'; 
dx 

(5) 

(6) 

(7) 

multiplying equations (5) and (6) the one by the other, we shall 
obtain · 

therefore 

z'y' = zy + Azh + Bzh2 + etc. + 
+ Ayh + AA'h2 + etc. + 

+ Byh2 + etc. , 

zj ~ zy = Az+ Ay + (Bz+ AA' + B'y)h +etc; 

and taking the lintit, and indicating, by a point placed before it, the 
expression to be differentiated, we shall get 

dd; =Az+Ay; 

and suppressing the common factor dx, 

d .zy = zdy + ydz. 

'Thus, to find the differential of the product of two variables, we 
must multiply each by the differential of the other, and add the 
products.' (pp.6-8) 

In § 15 this is correctly used to deterntine the differential of the 
product of three variables, in § 16 to obtain the differential of the 
fraction!:: . • 
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In§ 17 the differential of the power functiony = xm for a positive m 
is obtained from the formula 

d .xyztu etc. _ dx dy dz <!!. + du + (
9

) 
-··--· -·- - x + y + z + t u etc. 

under the supposition that x ,y, z, t, u etc. are equal to x and are taken 
m times. 

§ 18 contains the formula for correctly differentiating a power func
tion. 

In § 19 by the use of the formula for operation with the differential 
symbols (having related the problem to previous cases) it is correctly 
shown in the cases of fractional and negative exponents. 

In§ 20 the differential of a power [function] is obtained immediately 
by the expansion of (x + h )m according to the binomial theorem of 
Newton. 

In the third edition ofBoucharlat's course-book, the English trans
lation of which Marx used, there is a 'Note Second' in the appendices 
with a title beginning, 'Considerations which prove the solidity of 
differentiation ... ' Since this comment attracted Marx's special 
attention, its text is introduced here (in part): 

'With the exception of the differentials of circular functions, 
which, as we have already seen, are readily found by the formulae 
of trigonometry, all the other monomial differentials, such, for 
example, as those of xm, ax, log x, etc., have been deduced from 
the binomial theorem alone. We have, it is true, had recourse to the 
theorem of MacLaurin, in the determination ofthe constant A in 
the exponential formulae, but we might have dispensed with it.' 

Later, with the help offormal manipulations ofinfinite series which 
are not at all well-founded from the modern point of view, it is shown 
how this might be done, after which Boucharlat concludes: 

'It follows from this that the principles of differentiation rest all 
of them on the binomial theorem alone, and since that theorem has 
been demonstrated, in the elements of algebra, with all the rigour 
possible, we may conclude that our principles are founded on a 
firm basis.' (p.362) 

Thus it is clear that Boucharlat adhered to the viewpoint of the 
'algebraic' differential calculus of Lagrange, which he tried to 
improve with the help of the concept of limit. His 'improvement', 
however, reduced to the fact that whereas Lagrange watt ted to avoid 

I 

L 
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.the application of the then not yet well-based concept of limit and 
simply defined the derivative of f(x) as the coefficient of the fir~t 
power of h in the expansion 

f(x+h)=f(x)+Ah+Bh2+Ch3 + ... , (I) 

where A, B, C, ... are functions of x, Boucharlat 'uncovered' the 
same derivative ('differential coefficient') by means of the passage to 
the limit, which last, however, consisted simply of taking h = 0 in the 
expression 

f(x + h)~ f(x) = A + Bh + Ch2 + ... , (2) 

which is derived purely formally from equation (1). Boucharlat gave 
no definition of the concept of 'limit' or any sort of commentary on it. 
He limited himself to hints to the effect that the limit is the last value 
of the unlimitedly close approach (that is not having a last value) of a 
variable quantity. No wonder that such a concept of limit could not 
possibly satisfy Marx. 
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TAYLOR'S AND MACLAURIN'S THEOREMS AND 
LAGRANGE'S THEORY OF ANALYTIC 

FUNCTIONS IN THE SOURCE-BOOKS USED BY 
MARX 

1) These theorems, including Lagrange's closely connected theory of 
analytic functions, attracted Marx's particular attention, and he spec
ifically devoted a series of longer, more important manuscripts to 
them (seemss 4000,4001,4300,4301,4302 [not translated]). In order 
to understand these manuscripts, particularly the critique to which 
Marx subjected the proof of Taylor's theorem which had been intro
duced in the handbooks at Marx's disposal, it is necessary to become 
acquainted with these proofs and with the corresponding ideas of 
Lagrange. Before we approach them, however, let us establish some
thing of the history of Taylor's and MacLaurin's theorems.* 

Taylor's Theorem is actually included as the 7th proposition of the 
book Methodus incrementornm directa et inversa by the English 
mathematician Brook Taylor (1685-1731), published in London in 
1715. Taylor had already advised his teacher John Machin by letter of 
this result in 1712. 'Taylor's Theorem' was so called for the first time 
in 1784 in the article 'Approximations' in the French Encyclopaedia 
(Encyclopidie mt!thodique) of Condorcet. In 1786 Simon Lhuilier also 
used this title in the book Exposition e/imentaire des ca/culs supCrieure, 
honoured by an award by the Berlin Academy of Sciences (the thesis 
had been offered in a competition of the Academy). Since that time 

* As sources we have used: M. Cantor, V orlesungen iiber Geschichte der Mathematik, 2nd 
ed, Vo1.3, pp.378~382; D.D. Mordukhai-Boltovskoi, 'Kommentarii k "Metodu raz
nosteei"' (Commentary on the 'Method of Differences') in the book Isaak Nyuton, 
Matematicheskie roboty, Moscow/Leningrad 1937, pp.394-396; M.V. Vygodskii, 'Vst
upitel'noe slovo k "Differentsial'nomu ischisleniya" L. Eilera' (Introduction to L. 
Euler's 'Differential Calculus') in the book L. Euler, Differentsial'noe ischislenie, 
Moscow/Leningrad, 1949, pp.I0-12; G. Vileitner, Istoriya matametiki ot Dakarta do 
serediny XIX stoletiya, Moscow 1960, pp.l38-140; 0. Becker & J.E. Hofmann, Ges
chichteder Mathematik, Bonn, 1951,pp.200-201, 219; G.G. Tseiten,Istoriyamatematiki 
v XVI i XVII vekakh, Moscow/Leningrad, 1938, pp.412, 445; D.Ya-. Stroik (Dirk 
Struik),Kratkii ocherk istorii matematiki Moscow 1964, no.153-154. For more complete 
coverage see the book by M. Cantor, pp.378-382. -
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, the theorem has entered all the handbooks of mathematical analysis 
and no one has called it anything else. We know nowadays, however, · 
that the Scottish mathematician James Gregory already possessed it in 
the years 1671-72. 

Both Gregory and Taylor approached 'Taylor's Theorem' starting 
from finite differences. At this point Taylor addressed himself 
directly to the problem of considering Newton's deliberately utterly 
vagne explanation of his interpolation formulae. Newton had 
obtained his theorem by first allowing the independent variable to 
differ from zero by a (finite) increment and then- after a series of 
transformations -returning it to zero 'by dividing it into an infinitely 
large number of pieces'. If we replace Taylor's extremely cum
bersome notation by more modern notation, the proof appears as 
follows. 

Let y = f(x), where x is a variable which is varied, as he says, 
'uniformly', that is, obtaining the successive values x, x+D.x, 
x + 2L:.x, ... , x + n.C:.X = x + h. And let the corresponding values 
off(x) bey(ory0),Yt>Y» .•• ,y •• Letthesuccessivedifferences 
(differences of the first order) betweeny._1and Y• (k = 0, 1, ... , 

' n-1) be D.y, D.y" ... , D.y._1; the differences between these dif
ferences (differences of the second order) are D.2y, D.2y 1 , ••• , 

D.2y._2; and so on. In order to visualise all this, Jet us write it in 
scliernatic form: 

X X+ f:.x X+ 2f:.x X+ 3f:.x .•• x + n.C:.X 
y Yt Y2 y, ... Yn 

D.y l';.y, D.y2 ... D.y._, 
D."y !:;,.2y, ... ~2Yn-2 

D."y · · · b.
3
Yn-3 

It is then clear that: 

y,=y+D.y, 

Y2 = Yt +D.y,, D.y, = D.y +b.2y , 

y, = Y2+D.y2, b.y2 = D.y,+D.')I,, f::,.2y, = f::,.2y +D.3y , 
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Hence we further obtain: 

f(x +t:.x) = Yt = Y +LI.y , 

f(x+2t:.x) =y2 = (y+LI.y)+(LI.y+ Ll."y)=y+2LI.y+LI.2y, 

f(x+3t:.x) =y3 = (y+2LI.y+.t.•y)+ (LI.y+.t.•y)+ (.t.•y+LI.ly) 

= y +3LI.y +3LI.2y + Ll.3y , 

Having observed the general regularity, Taylor concludes from this 
that: 

fir + A--)_ + A + n(n- 1) A 2 + n(n- 1) (n- 2) AJ 
,x n= - y n,_,y 1.2 ,_, y 1.2.3 ,_, Y 

+ ... + C.')> , (1) 

which is Newton's interpolation formula (for interpolation across 
equal intervals). Its similarity to Newton's binomial theorem is strik
ing - particularly the fact that the coefficients in the expansion into 
.t.y, C. •y, . . . , C. •y are exactly the same. 

Setting nt:.x = h (Taylor used v instead of h), we will have: 

n - h h-t:.x h - l:,x' n- 1 = --z:;x-, n- 2 = -2/:,x 
A- ' 

· · . , n- (n- 1) = h- (n- 1)/:,x 
l:,x 

Substituting these values for n, (n- I), (n- 2), ... into for
mula (1), Taylor obtained (in our notation): 

f(x +h) = y + h Ll.y + h(h- l:,x) .t.•y 
l:,x 1. 2 l:,x 2 

+ h(h-t:.x) (h- 2/:,x) Ll.ly -+ 1.2.3 f:,x3 

although he didn't even write out the lasuerm , 

... ' 

h(h- t:.x) (h- 2t:.x) ... (h- (n- 1)t:.x) C.')> 
1.2 ... n t:.x• · 

(2) 

f 
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He now assumed h to be fixed, n to be actually infinitely large, and 
t:.x to be actually infinitely small ('zero'), inferring that this 

transformed ~ into the first fluxion j ( ~ according to Leibnitz ), 

-~ into the second fluxion y ( £1 according to Leibnitz ), and so 

on. This transforms formula (2) into: 

fir h) "h .• h2 ... h3 
,x + = y + y + y 1:2 + y 1. 2. 3 + .. -· ' 

that is, into Taylor's series. 
Thus, even beginning with finite differences and ouly then 'remov

ing' them, Taylor still operated strictly in the style of Newton and 
Leibnitz, with actually infinitely large and actually infinitely small 
quantities and with the symbolic formulae of the calculus of fluxions, 
not wondering whether they had any 'real equivalent' and not bother
ing to consider, of course, the convergence of the obtained 'series (even 
to the value of f(x + h)). One must note here that, although Taylor 
was an ardent adherent of Newton's in the quarrel with Leibnitz and 

·therefore never used the latter's notation nor ever cited him, it is 
nonetheless no accident that Euler presented the proof* in the lan
guage of Leibnitz. As D.D. Mordukai-Boltovskoi notes, in essence 

·Taylor addressed the Newtonian fluxions from the Leibnitzian, not 
the Newtonian, standpoint, namely from that of finite differences (see 
the Kommentarii cited in Yanovskaya, 1968, p.396). 

AsforthehistoryofMacLaurin'sTheorem,itmustbenotedflrstof 
all that it was already present in Taylor in the form of a special case of 
his theorem at x = 0. I tis true that, uulike MacLaurin, Taylor never 
used the 'MacLaurin series' for the expansions already known at this 

time, for a', sin £, cos !£ which are more easily obtained using this a a 
theorem. 

Furthermore, with respect to the manuscripts of Marx, who spec
ifically mentioned that he borrowed the 'algebraic expansion' directly 
from MacLaurin, it must be noted that the proofs of MacLaurin's 
Theorem (by the method of indeterminate coefficients) which were 

. presented in Boucharlat's and Hind's textbooks actually belonged to 
MacLaurin himself. Such direct borrowing from the author whose 

-* Still, Euler proved Taylor's theorem following Taylor. See L. Euler, Differential 
Calculus, chapter 3, 'On the Approximation of Finite Differences'~ §§44-48. 
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name the theorem bears may also have taken place, of course, with 
reference to Taylor's Theorem. The bibliographic list which Marx 
compiled while preparing the historical sketch is apparent evidence 
that he had decided to become acquainted with Taylor's work in the 
original, although he did not succeed in carrying out this intention. 

2) We find the same order in which Marx criticised the proof of 
Taylor's Theorem in manuscript 4302, in Boucharlat's textbook as 
well Q.-L. Boucharlat, Elimens de calcul differirentiel, 5th ed., Paris, 
1838; Marx apparently had an English translation done from a dif
ferent edition). 

Having stated the problem of successive differentiation in § 30 
(pp.l9-20)- where, by the way, after having obtained 6a as the third 
derivative of ax3 he remarks (p.20), 'here it is no longer possible to 
differentiate since 6a is a constant' - Boucharlat passes to Mac
Laurin's Theorem (§31, pp.20-21), proving it by assuming the proof 
of Taylor's Theorem (later proved in §§55-57, pp.34-37). 

As was already mentioned, Boucharlat proves MacLaurin's 
Theorem by following MacLaurin himself. He apparently did not 
read the latter's work, however. In fact, with respect to the tide 
'MacLaurin's Theorem', Boucharlat writes, 'this theorem, as 
G.Peacock has noted, was discovered by G. Stirling in 1717, con
sequently earlier than MacLaurin used it,' although, as we have 
already mentioned, MacLaurin fully acknowledged that Taylor 
already had the theorem. 

Boucharlat's proof- which raises not a single question about the 
correctness of the assumptions made, not to mention the convergence 
of the series uoder consideration - we present below in almost literal 
translation. 

'Let y be a function of x; let us expand it in terms of x and 
assume: 

. y = A + Bx + Cx2 + Dx3 + Ex4 + etc. ; 

we obtain, differentiating and dividing by dx: 

;fx = B + 2Cx+ 3Dx2 + 4Ex3 + etc., 

a•y
ax•-
d'y 
dx'= 

2C+ 2.3Dx+ 3.4Ex2 + etc., 

2.3D+ 2.3.4Ex+ etc., 

(16) 
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Let us denote by (y) that into which y is transformed when x = 0, 

by (~)that into which~ is transformed when x = 0, 

by ( ~} that into which ~ is transformed when x = 0, 

the preceeding equations give us 

(dyl rd"yl rd'yl (y) =A, dx = B, dx• = 2C, dx' = 2.3D' 

whence we extract 

(dy) I (d"y) 1 (d
3
y) A = (y)' B = dx ' C = 2 dx 2 ' D = 2.3 dx' ; 

substituting these values into (16), we will have 

(dy) l (d"y) l (d'y) y = (y)+ dx x+ 2 axr x•+ 2.3 II? x'+ ... ' (17) 

and this is MacLaurin's formula.' 

In the following§§ 32-34 (pp.21-22) expansions are found by means 
of MacLaurin's formula for 

1 - -- ' y- a+x y=~a2 +bx, y=(a+x)m. 

By this means the binomial theorem is derived from MacLaurin's 
Theorem in the third example. In the first appendix to our 5th edition 
of Boucharlat's texbook entitled 'Proof of Newton's formulae by 
means of differential calculus', a direct derivation (by the same 
method of indeterminate coefficients) is given of Newton's binomial 
theorem (for positive integer powers) by means of successive dif
ferentiation. It appears as follows. 

Boucharlat begins with an expansion of (I+ z~, from which the 
required expansion for- (a+ x)m is obtained by the substitution 
z =..!.Assume, he says, 

a 

(I+ z)m =A+ Bz+ Cz2 + Dz3 + Ez4 + (I) 
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Setting z = 0 he obtains A = 1 and consequently 

(l+z)m = l+Bz+Cz2+Dz3 +Ez4 + 

Differentiating both sides of this equation with respect to z, he next 
finds 

m(l + z)~1 = B + 2Cz + 3Dz2 + 4Ez3 + etc. 

Referring to the fact that this equation is valid for any z, Boucharlat 
sets z = 0 and obtains by this means m = B. Differentiating once 
more and again setting z = 0, he obtains 

m(m- 1) = 2C, 

whence he finds 

C = m(m- 1) 
2 , 

after which he concludes: 'In the same manner all remaining coef
ficients are determined, and upon substituting their values into equ
ation (1) this equation is transformed to 

(1 + z)m = 1 + mz + m(m- I) z2+ m(m- 1) (m- 2) z' + etc.' 
1.2 1.2.3 

(pp.491-492). 

3) Boucltarlat also demonstrates Taylor's Theorem by the method 
of indeterminate coefficients. In this case he not only assumes that an 
arbitrary function of many variables may be expanded into a series of 
powers of any ·of the variables, but he also considers this expansion 
unique; that is, that the coefficients of any two such expansions (in 
powers of one and the same variable) must be equal. This makes it 
possible to apply the method of indeterminate coefficients. 

In order to arrive at this possibility, that is, of comparing the 
coefficients of two expansions of one and the same function, Bouchar
lat begins with a lemma which asserts that the derivatives of f(x + h) 
with respect to x and to h are equal. Since Marx expresses dis
satisfaction in manuscript 4302 (see Yanovskaya, 1968, p.540 [not 
translated]) with the demonstration of this lemma in Boucharlat's 
course-book, while it is iropossible even to understand pp.41-42 (see 
Note 117 Yanovskaya, 1968 [not translated]) of manuscript 3888 
without being acquainted with this proof, we present il here in full. 
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Devoted to this is§ 55 (pp.34-35), in which we read: 

'If in some function y of x the variable x changes to x + h, we 
then obtain one and the same differential coefficient both when x is 
the variable while h is constant, and when h is the variable while x 
is constant. 

'If in order to show this we substitute x + h = x 1* in place of x in 
the equationy = f(x), we then havey 1 = f(x); the differential of 
f(x 1) will then be equal to some other function of x 1 , represented 
by c:p(x 1 ), mnltiplied by dx; consequently, dy 1 = c:p(x 1 )dx1 or if 
we replace x 1 by its value x + h , 

dy 1 = c:p(x + h) d(x + h) . 

But the only change which the hypothesis that x is variable while h 
is constant introduces into this differential refers solely to the 
factor d(x + h), which reduces to dx when x is variable while h is 
constant; consequently, in this case we have 

dy 1 = c:p(x + h)dx , 

whence we obtain 

dy1 
dx =c:p(x +h) . (35) 

'If on the other hand we make x constant while h is variable, the 
factor d(x +h) then reduces to dh and we will have 

dy 1 = c:p(x + h)dh , 

that is, 

;r1 = c:p(x +h) ; 

comparing these two values for c:p(x + h), we obtain 

dy1 - dy1 ax- dh 

(36) 

In the following §56 Boucharlat extends this lemma to derivatives 
of higher order and in.§ 57 uses it to prove Taylor's Theorem. He 

* Although Boucharlat does employ Lagrange's notation for derived function, he 
designates the increased x andy (i.e. (x +h) and f(x +h) ) as X andy'. We have 
replaced this designation with x1 , y 1 • 
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begins this 'proof with the following words on what he considers -
and as Marx calls it -his 'starting equation' (37), applicable to any 
function: 'Let y 1 be a function of x + h; let us assume that when we 
develop this function into powers of h we obtain 

y 1 = y + Ah + Bh'+ Ch3 + etc.', (37) 

where A , B, C, . . . are unknown functions of x which are yet to be 
determined.' 

Differentiating equation (37) with respect to h and with respect to 
x , and having obtained by this means 

:
1 =A+ 'lBh + 3Ch2 + etc., 

dy1 - dy dA dB 2 
dx - dx + dx h + dx h etc. ' 

Boucharlat then sets the coefficients of corresponding powers of h in 
the two equations equal to each other, referring to the lemma, and by 
this means obtains the expressions he needs for the coefficients A , B , 
C, ... of y and its successive derivatives. Marx gives an account of 
this proof on one occasion in manuscript 3888 (sheets 54-55; pp. 50-51 
in Marx's enumeration), where he compares it to the proof of Mac
Laurin's Theorem presented above. He criticises this proof in man
uscript 4302, primarily for a lack of foundation for its initial 
hypothesis. 

The following§§ 58-61 in Boucharlat's book contain examples of 
expansions of f(x + h) by Taylor's formula in the case of f(x) equals 
[X, sin x, cos x, log x. Questions about the convergence of the series 
obtained are not even mentioned. Cases of inapplicability of the 
Taylor series are only considered in the very last paragraphs of the 
flrst part of the book (devoted to differential calculus) which are 
printed in small type. 

The concluding §62 of the section on Taylor's Theorem and its 
applications is devoted to a proof of MacLaurin's Theorem from 
Taylor's Theorem. Marx reproduces this proof in fnll in manuscript 
3888 (see sheets 55-56; pp.51-52 in Marx's enumeration). 

Notes 



NOTES 

[ The following is a complete, unabridged translation of notes to the 
1968 Russian edition (referred to as Yanovskaya, 1968), covering 
pages l-139 in this edition. Commentary by the translators is indi
cated by square brackets- Ed. J 
1 The manuscript was written in 1881 for Engels. This is the ftrst 
work in a series of manuscripts conceived by Marx and devoted to a 
systematic exposition of his ideas on the nature and history of dif
ferential calculus. In this work he introduces his concepts of algebraic 
differentiation and the corresponding algorithm for fmding the 
derivative for certain classes of functions. On the envelope enclosing 
the manuscript there is the notation in Marx's. handwriting: 'For the 
General'. This was Engels's nickname in Marx's family because of his 
articles on military questions. Having acquainted himself with the 
manuscript, Engels answered Marx in a letter on 18 August 1881 (see 
p.xxvii). The published German text of the manuscript repro
duces exhaustively Marx's text. Some of the preparatory material 
(drafts and supplements) is published on page 473 of Yanovskaya, 
1968. Variant readings from the unpublished drafts are provided in 
footnotes. The manuscript was published for the ftrst time (not in full) 
in 1933 in Russian translation in the collection Marxism and Science 
(Marksizm i estest'Voznanie), Moscow, Partizdat, 1933, pp.5-ll; and in 
the journal Under the Banner of Marxism (Pod znamenem marksizma) 
No. I, 1933, p.ISff. This is the ftrst time it has been published in 
German. 

2 
In order to avoid confusion with the designation of derivatives, 

Marx's notation x' , y' , . . . for the new values of the variable has been 
replaced here and in all similar cases by x 1 , y 1 , • . • 

In the sources which Marx used there was as yet no concept of 
absolute value. Therefore Marx frequently (apparently in order to be 
positive) regards only the growth in the value of the variable, but 
sometimes (seep.l09 of this volume andp.Sl4 Yanovskaya, 1968) he 
speaks also of the 'increase of x' in a positive or negative increment h'. 

193 
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3 In keeping with the accepted terminology of the source-books 
which Marx consulted, a finite difference is here understood always to 
be a non-zero difference. 

4 Marx distinguishes in each equation two sides (where now we speak 
of two parts), the left hand and the right hand which do not always 
play symmetric roles. On the left-hand side of the equation he fre
quently places two different, equivalent expressions joined by the 
conjunction 'or'. 

5 In the mathematical literature which was at Marx's command the 
term 'lintit' (of a function) had no well-defmed meaning and was 
understood most often as the value the function actually reached at the 
end of an infinite process in which the argument approached its 
lintiting value (see Appendix I, pp.l44-14S). Marx devoted an entire 
rough draft to the criticism of these shortcomings in the manuscript, 
'On the Ambiguity of the Terms "Limit" and "Limit Value" ' 
(pp.l23-126). In the manuscript before us Marx employs the term 
'lintit' in a special sense: the expression, given by predefinition, for 
those values of the independent variable at which it becomes unde-

fmed. For Marx, the ratios ~ (at /':,x = 0 this is transformed to %) 
and :7., interpreted as the symbolic expression of the ratio 'of 

annulled or vanished differences', that is, of %' are such expres

sions. With respect to the ratio ~' Marx (influenced to a certain 

degree by the definitions of this concept in Hind and Lacroix; see 
Appendix I, p.l43) took this to be an expression which is identically 
equal to this ratio when /':,x * 0, but which has been predefmed 
by continuity when the ratio is transformed to ~. The 

'limit', at that point,_ consequently, must be the 'preliminary deriva
tive' (concerning which see. p.6 and note 7). Exemplifying 

this, Marx writes (on p.6), with respect to the ratio ~ where 

y = ax3 + bx2 + ex + d: 'The "preliminary derivative" 
a(xl + x 1x + x 2 ) + b(x 1 + x) + c appears here as the limit of a ratio 
of fmite differences; that is, no matter how small we allow the dif-

ferences to become, the value. of ~ will always be given by this 

"derivative".' Later (on p.7), Marx mentions that setting x 1 equal to 
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x, that is, setting /':,x = 0, 'reduces this limit value to its absolute 
minimum quantity ,' giving its 'final derivative'. 

Analogously, by 'the limit of the ratio of differentials' Marx in this 
manuscript means the 'real' ('algebraic' - see note 6) expression 
which provides the value for this ratio; in other words, the derived 

function. Marx writes, however, that in the equation :7. = f'(x), 

'neither of the two sides is the lintiting value of the other. They 
approach ·one another, not in a lintit relationship, but rather in a 
relationship of equivalence,' (see p.l26). But here, the concept of 
'limit' (and of 'limit value') is used in another sense, close to the one 
accepted today. Marx uses the term 'absolute minimal expression' 
(see, for example, p.l25) in a sense even closer to the contemporary 
concept of limit, when he writes in another passage (see p.68) that it is 
interchangeable with the category of lintit, in the sense given it by 
Lacroix and in which it has had great significance for mathematical 
aDalysis (for Lacroix's definition, see Appendix I pp.ISI-153). 

6 By 'algebraic' Marx understands any expression which contains 
symbols neither of the derivative nor of differentials. Such a use of the 
term 'algebraic expression' was characteristic of matherriatical lit
erature at the beginning of the 19th cenrury. 

Marx frequently distinguishes between the concepts 'function of 
(von) x' and 'function in (in) x', that is, the function as a cor
respondence and the function as an analytical expression (see p.506 
Yanovskaya, 1968). In the manuscript before us he does not adhere to 
this distinction strictly, speaking most of the time of simply 'the 
function x (die F unktion x [rendered 'the function of x' in English J )', 
perhaps because he always has in mind ouly functions given by a 
certain 'algebraic expression'. He provides a correspondence relating 
the value of the dependent variable y to the value of the independent 
variable x by means of the equation y = f( x) , where y is the 
dependent variable and f(x) is an analytic expression with respect to 
the appearance of the variable x in it. 

7 The essence of Marx's method of algebraic differentiation consists 
of his predefinition (for x 1 = x) of the ratio of finite differences 
(having meaning ouly when x 1 = x), 

f(x,)- f(x) 
Xt- X 

(I) 
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by means of continuity. With this goal in mind he writes down the 
function cp(x 1 ,x), which coincides with (l)for all x 1 = x and which is 
continuous as x 1 --> x. Marx calls such a function cp(x 1 , x) the 
preliminary derived function of the function f(x), while the function 
cp( x ,x) , which is obtained from cp( x 1 ,x) under the assumption that 
x 1 = x , he calls the derivative of the function f( x) . If this function 
exists (which is a relevant question for the classes of function under 
consideration), then it coincides with the present-day concept of the 
derivative, namely: 

lim f(x1)- f(x) = f'(x) 
x 1~x x 1 -x 

Already in Marx's time well-known functions existed for which the 
operation of differentiation was undefined (see p.ll7 of the present 
edition [and note 85, p211J). 

8 Marx reproduces here the formal expansion of the function into a 
series which is typical of the mathematics books at his command, 
having left to one side the questions of the series so obtained and the 
agreement of the value of the function with the limits of the partial 
sums. 

9 • •• : a symbol employed in the manuscripts to stand for the word 
'consequently'. 

10 The text entitled 'Supplementary' comprises the contents of a 
separate sheet, appended to the manuscript, of independently num
bered pages l and (on reverse) 2. 

11 By equation of finite differences Marx clearly intends an expre
ssion of the form 

f(x 1)- f(x) = (x 1- x)cp(x 1, x). See note 7 

12 At this point S [amuel] Moore wrote in pencil 'Nicht der Fall, diese 
Factorensindx 1- x- !,x 1 - x- 2etc.'('Notthecase. These factors 
are x 1 - x- !, x 1 - x- 2, etc.'.) Obviously Marx intends here not 
the factors (x 1 - x) but rather the expression x 1 - x, and meantto say 
that the transition to zero of the difference x 1 - x, having been 
preserved in the expression for the preliminary derivative, does not 
deprive the latter of meaning. 

13 The manuscript dates from 1881. On the envelope att~ched to the 
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manuscript is written 'II For Fred' (II Fiir Fred). Marx calls this 
manuscript the 'second instalment' (seep.33), since, in it he continUes 
to set forth the views at which he arrived in the process of studying 
mathematics. Engels showed the manuscript to S[amuel] Moore and 
conveyed the latter's comments to Marx in his letter of November 21, 
1882 (see p.xxix). The manuscript 'On the Differential' was first 
published (not in full) in Russian translation in the 1933 collection 
Marxism and Science (Marksizm i estestvoznanie), pp.l6-25; and in the 
journal Under the Banner of Marxism (Pod znamenem marksizma), 
1933, No.I. 
14 Marx thus assumes here that the functions u and z, which, as 
subsequently becomes clear, are de!med by means of the equations 
u = f(x), z = cp(x) (where f(x) and cp(x) are expressions 'in the 
variable x '),are differentiable functions of x. The fact that no further 
information on the functions f(x) and cp(x) is required to prove the 
theorem on the differential of the product of two functions, is 

reflected in Marx's graphic comments regarding ;li, :ii: 'shadow 

figures lacking t)J.e body which cast them, symbolic differential coef
ficients without t1>e real differential coefficients, that is without the 
corresponding eqUivalent "derivative" '(see p.20). Marx also dis
cusses this specifically in his rough draft essays on the differential. 
Here and hereafter we shall write d(uz) instead of the contraction duz 
which Marx used in !tis manuscripts. 
15 The symbols for derivative and differential which are specific to 
differential calculus are intended here. 

16 In the literature of the 18th-19th centuries the derivative was often 
called the 'differential coefficient', which is obviously related to the 
definition of the derivative as the coefficient of the first power of the 
increment h of the independent variable x in the expansion of the 
expression f(x + h) into a series of powers of h. The adjective 'real' 
refers to the fact that the expression for f'( x) contailJ.s no symbols 
which are restricted to differential calculus. 

17 This way of speaking, in which as a result of multiplication by zero 
'the variables u and z themselves become equal to zero,' is explained 
by the fact that in Marx's time there still existed widespread con
ceptions of mathematical operations on numbers as .changing the 
numbers themselves: the addition of the positive number b to a 
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'increases the number a', the multiplication of a by 0 'changes the 
number a to zero', and so on. These conceptions were put on a 

· scientific basis ouly in the 20th century. 

18 The words 'since we can begin the nullification arbitrarily with 
numerator or denominator' obviously mean that the predefinition 

of an expression of the form ~~, which at x = a becomes ~ and 

therefore loses any meaning, may be established for x = a in a number 
of different ways. If we wish to preserve in the predefinition that 
property of the ordinary fraction which makes it equal to zero 

when the numerator is equal to zero, then the value of~:; must be 

zero. 'To begin the nullification with the numerator' in this case 

sintply means to set~:; equal to zero. Since, however, a fraction with 

a denominator of 0 does not exist, 'to begin the nullification with the 
denominator' makes it impossible to retain in the predefinition any
thing of the properties of an ordinary fraction with a zero denom-

inator. But if for all x #a ~~ = <p(x), and <p(x) is continuous at the 

point a(that is, lint <p(x) = <p(a)), then it is natural'to set fi((a)) 
x-..:,.. a g a 

equal to <p(a), retaining in this manner the equation :~:; = <p(x) 

even for x = a. If the numerator is also transformed to zero because 
the denominator is set at zero, then the words 'begin the nullification 
with the denominator' may be explained naturally as denoting: pre
define in the above-mentioned manner, that is, 'using continuity'. In 
the books which Marx used, even including the large Traite of Lac-

roix, the preservation of the equation ~=~ = <p(~) in the case of 

f(a) = g(a) = 0 was considered independent, in general, of whatever 
may have been 'derived'; it was a necessary consequence of the 
metaphysical law of the continuity of 'all real numbers'. 

19 There is a slip of the pen here in the text: instead of x = a there 
appears x2 = a2 

• Instead of correcting it, someone, apparently 
Moore, made insertion marks in the text in pencil, after which he 
observed, 'und da x2 = a2 • ·• x = ±a = = 2Pa oder 0,' that is 'and 
since x2 = a2

, thenx =±a, [whence P(x+ a)]= 2Pa or [=]0'. 
Such an interpretation, however, clearly . does not agree with the 
overall context. 

NOTES 199 
20 

Marx here calls the expression ~ , which was obtained by the 

transition from·a ratio of finite differences to the derivative, the sym

bolic differential expression for y,- Y, corresponding to f(x,)- f<x). 
Xt-X X1 X 

21 
Apparently this concerns the case where the choice of independent 

variable is not necessarily fixed, where either u or z may be used as 
the independent variable. In general, if u and z may be considered to 
be interchangeable functions of one and the same independent var
iable, then assigning a value to either one of u and z determines the 
value of the independent variable and, of course, the value of the other 
function as well. In other words, what is intended here is the 
invariance of the symbolic operational equation with respect to the 
choice of independent variable. 

22 
Apparently the word 'dir' (to you) in the phrase 'de> dir bekannte' 

(which is known to you) was omitted during recopying, although it is 
preserved in the notebooks. It is to be understood that this concerns 
the French mathematician L.B. Francoeur, about whom Engels 
wrote to Marx in the letter of May 30, 1864. The word in quotation 
marks, 'elegant', refers to Engels's comment, 'Einzelnes ist sehr eleg
ant' ('Someone is very elegant'), and contains, obviously, a hint of an 
ironic relationship of Engels to the author under discussion. Fran
coeur, like Boucharlat and some others, tried to combine the 'algeb
raic' method of Lagrange (see pp.24) with the differential calculus of 
Leibnitz, all the while operating with the symbols of differentials. 
Marx's note of irony about the 'clarity' with which this was done, 
concerns both Boucharlat and Francoeur. The first, in order to 'facili
tate algebraic operation', introduced an absurd formula; the second, 
suggested that the differential 'appears synonymous to the derivative 
and differs from it only ambiguously', consequently, he also wrote, 
'the derivative of x is x' = I or dx = I'. 

23 
The extract in quotation marks is a text translated from the French 

of the books of J.-L. Boucharlat. See, for example Elemens de calcul 
differential et de calcul integral fifth edition, 1838, p.4. 
24 

The reduction to its 'absolute minimum' here obviously implies 
the stated predefinition of the ratio by continuity at x

1 
= x; that is, in 

essence, the transition to the limit where x 
1

........,. x. 
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25 See Appendix III, 'On the Calculus of Zeroes of Leonhard Euler', 
p.l6G 

26 Marx here makes a distinction between the differential particles 
(die Differentiellen) dx and dy, which represent the 'removed' dif
ferences b,x and b.y, and the differential (das Differential) dy, which 
is defined by the equation 

dy = f(x)dx. (1) 

This last equation can be treated as an operational formula which 
makes it possible to find the derivative f( x) by means of the already 
determined differentials dy and dx, transforming equation (1) to its 
equivalent (see note [24j) 

dy 
dx = fCx). (2) 

27 Marx's argument against applying the method of treatment which 
already took place in the 'algebraic' differentiation of the simplest 
functions of first order consists of the following: 1) the step which 
consists of assunting x 1 = x is superfluous, since the prelintinary 
derivative here already agrees with the ftnal one; that is, that which is 
speciftc to the 'algebraic' method of differentiation does not come to 
light; 2) the extension to the general case of attributes of differential 
functions of the ftrst order may lead to the completely erroneous 
conclusion that all derivatives of higher order, beginning with the 
second, must be equal to zero. 

28 That is, consider ;t a ratio of inftnitely small quantities, as Leib

nitz and Newton had done already. 
29 That is, to fmd the derivative of y with respect to x, considering y 
as a function of x, given by the two equations: 

1) y = 3u2 , 2) u=x3 +ax2 • 

30 Marx assumes here that it has already been established that it is 
correct to operate with differentials as if they were ordinary fractions 
(see p.24 and Appendix V, p.l73). 
31 At this point in the manuscript Moore made the following note in 
pencil: 'On p.12(5) this is proved for the concrete case there inves
tigated. Should it not be proved instead of assumed for the general 
case also?' [English is garbled in text; recovered from Russian trans-
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lation- Trans. J This note, however, is based on a misunderstanding. 
The 'development demonstrated from given functions' consisted of 

the symbolic expressions * and ~ which had been obtained as a 

result of differentiation. Since, as Marx has already assumed, it is 
correct to operate with such expressions as if they were conventional 
fractions, the conclusion was natural that 

dy du_dy 
du'dx-dx · 

32 Marx did not write section III apparently because he did not 
succeed in carrying out his intention of studying John Landen's book 
in the British Museum (see Appendix IV). 
33 Under this heading are combined three drafts of various sections of 
the work, 'On the Differential', and several drafts supplementary to 
it. For more details see pp. 459,464,477,479 ofYanovskaya, 1968. 

34 This excerpt is taken from notebooks which Marx entitled 'A. I' 
and 'B (continuation of A). II' (see pp.459, 464 of Y anovskaya 1968). 
It begins on the last (unnumbered by Marx) page of the notebook 'A .I' 
and 'B (continuation of A). II' (seepp.459,464ofYanovskaya, 1968). 
It begins on the last (unnumbered by Marx) page of the notebook 'A.I' 
and is insened at various places in the notebook 'B' (Marx dis
tinguished it with special markings). Part of the indicated draft was 
ftrst published in Russian in 1933 (see Under the Banner of Marxism 
[Pod znamenem marksizma] No. I as well as Marxism and Science 
[Marksizm i estestvoznanie], pp.34-43). 
35 Marx everyhere calls 'symbolic' (as distinct from 'algebraic'; see 
note 6) those expressions which contain the symbols speciftc to dif
ferential calculus, dx, dy etc. He calls 'real' those expressions of 
functions which do not contain such symbols. 
36 The 'operational formulae of differential calculus' here means 
those symbolic expressions which indicate (see the text below) which 
operations must be performed on a defined function to obtain the real 
value of one or another derivative. · 
37 The notebook 'A.I' ends at this point. At the end of the page is 
written in Marx's hand, 'Sieh weiter Heft II, p.9' ('See further 
notebook II, p.9'). This indicates the notebook 'B (continuation of 
A)'. 
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38 Concerning the characteristics of this type of predefinition by 
continuity and the possibilities ofother predefinitions satisfying these 
or other conditions, see note 18 and Appendix I, p.l46. 
39 That is, when we make the transition from the region of the usual 
algebra to a function (the dependent variable) for which it is necessary 
to predefine the ratio 

f(x 1 )- f(x) 
X1 X 

which transforms to ~ at x 1 = x . 

40 
Marx usually calls expressions not containing symbols specific to 

differential calculus 'algebraic' (see note 6) or 'real' (see note 2). Here 
and in several other passages he calls them 'actual' (wirkliche ). Since in 
Russian mathematical literature the term 'actual' (number) carries 
another meaning [namely 'real number'- Trans], the word 'actual' 
(expression) is translated as its synonym 'real' [that is in Russian 
translation; in English 'actual' is not confusing- Trans]. 
41 

The manuscripts of the second and third drafts are in very rough 
form: they contain many deletions and insertions. The first four pages 
of the second draft are not preserved, so we begin with the first 
complete paragraph. These two drafts, less some abridgements, were 
first published in Russian in 1933 (Under the Banner of Marxism [Pod 
znamenem marksizmaJ, No.I, and Marxism and Science [Marksizm i 
estestvoznanie J , pp .26-34). See 'Preliminary Drafts and Variants of the 
Manuscript, "On the Differential",' point a, p.477 [Yanovskaya, 
1968]. 
42 

This entire paragraph (beginning with the words 'when the var
iable quantities increase ... ') is Marx's German translation of a 
passage in Hind's book (see T. Hind, 2nd edition, Cambridge, 1831, 
p.l08). The second draft breaks off at this point. The vacant space 
(more than half a page) which Marx left after this paragraph is 
apparent evidence that, not finding the desired quotation in Hind, 
Marx put aside the contemplated research, obviously intending to 
return to it later. 

Material on the differential of a product obtained by the methods of 
Leibnitz and Lagrange is contained in the text books of Hind and 
Boucharlat (see Appendix V pp.l73) As for Newton's method, the 
books mentioned do not illustrate it. ' 
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43 The citation is from the bookofBoucharlat(see,forexarnple, J.-L. 
Boucharlat, 7th edition, Paris, 1858, pp.3-4). · 
44 Here Marx projects a somewhat different enumeration of the 
sections of his work from that which he had followed earlier. In 
Section III he plans to locate materials which in the second draft were 
located in Section II; in Section IV, to comment on the historical 
development of differential calculus by means of the example of the 
history of ihe theorem on the differential of a product. 

45 In connection with this paragraph see note 5 as well as Appendix I, 
'On the Concept of "Limit" in the Sources Cited by Marx', p.l51 
(where there is a discussion of how in Boucharlat's textbook both 

sides of the equation ~ = f'(x) are treated as limits) and 

pp.l52-153 (where the discussion is about the concept of limit in 
Lacroix's long Traiti and Marx's related concept of the word in this 
paragraph). Exactly what Marx had in mind in his treatment of the 
symbolic expression as the limit of ft x) remains unclear. (Perhaps he 
simply had in mind the fact that the derivative was obtained as a result 
of the supposition that x 1 = x, that is, when the numerator 

and denominator of the ratio ~ both have attained their limit value of 

zero, so that the expression f'(x) must correspond not to ·~ but 

to ~.) Regarding Marx's comment on Lagrange's opinion of the 

concept of limit as understood by Newton, see p.l54 as well. 
46 Marx intended to write several supplements to 'On the Dif
ferential', four sketches of which survive (for more details see 
pp.479-490 [Yanovskaya, 1968], which presents a series of extracts 
from these sketches). Since the drafts are not fmished, ouly two more 
complete (and understandable) extracts from them are reproduced 
here. They are adapted from supplements to the second and third 
drafts. 

47 This is Marx's heading to section A) of the second draft of the 
supplement to the manuscript 'On the Differential'. Only point !), 
containing a short resume of the basic work on the differential, is 
published here. The important supplementary material to the latter 
work here is the direct indication of the geometric applicabiliy of 
operational formulae. For more detail see p.479 [Y anovskaya, 1968]. 
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48 This is paragraph A) of the third draft of the supplement. The 
heading is due to Marx. Published here is only point 3), in which 
Marx (in his characteristically literary style) introduces the appli
cation of the theorem of the differential of a product as an operational 
formula for finding the derivative of a fraction. 

49 With his manuscript 'On the Differential', Marx fulfilled a prom
ise to write a specialised piece shedding light on the historical path of 
the development of differential calculus. In sketches preceding this 
letter ['On the Differential' was a letter to Engels - Trans], he 
expressed an intention to illustrate the history of differential calculus 
by means of the history of the theorem on the differential of a product. 
Obviously Marx succeeded in carrying out neither of these intentions 
completely. Only the tentative drafts contained in the notebook 'B 
(continuation of A)', where they alternate with Marx's computations 
for his work on the differential, have survived. These drafts begin, 
appropriately for Marx's primary purpose, with an explanation of the 
methods ofN ewton and Leibnitz in the example of the theorem on the 
differential of a product. For the same reason, only the beginning goes 
like this and not the concluding section explicating the method of 
d' Alembert. Later Marx passes to a more detailed discussion and 
critique of the methods of Newton and Leibnitz in general. This 
brings him to the general periodisation of the history of differential 
calculus, in which three periods are distinguished: 1) the mystical 
differential calculus of Newton and Leibnitz, 2) the rational dif
ferential calculus of d' Alembert, and 3) the purely algebraic dif
ferential calculus of Lagrange, the characterisation of which com
prises the second part of the extant drafts of the history of differential 
calculus. It was this part which Marx apparently decided to develop 
into a third letter to Engels. The concluding part of the historical 
drafts presents a more detailed exposition of the general ideas con
tained in the first part. The drafts are published in full with the 
exception of notes whose content refers to the work 'On the Dif
ferential', which are omitted. 

50 The bibliography which Marx presents in this list is accompanied 
in many cases by indications of the exact passages in the sources cited 
where the fundamental concepts and methods of differential calculus 
are discussed. These were not indicated in the textbooks at Marx's 
disposal. There is therefore every reason to suppose that Marx chose 
these passages by consulting the corresponding works (in the library 
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of the British Museum, apparently). The fact that Marx especially 
distinguished (placed in a panel) the name I ohn Landen is obviously 
related to the fact that he had decided to acquaint himself particularly 
well with I .Landen'sResidual Analysis. For more details on this see 
Appendix IV. The sources for Marx's notation of the dates of birth 
and death on the list are unknown. It is only clear that the sources did 
not have the date of death of Lagrange. 

51 In the scholium (lesson) to Lemma XI of the first book of Principia 
Mathematica and in Lemma II of the second book, Newton explains 
the fundamental concepts of differential calculus which correspond to 
our concepts 'derivative' and 'differential'. For more details on these 
lemmas of Newton see Appendix II, pp.l56-159. 

52 See Marx's outlines of these works (with his critical commentaries) 
on pp.272-280 [Yanovskaya, 1968]. 

53 D' Alembert's Traite des jluides does not contain any material on the 
fundamentals of differential calculus. D' Alembert's views on the 
fundamental concepts of differential calculus were presented in his 
articles in theEncyclopedie and in hisOpuscules mathbnatiques. It is not 
known what attracted Marx's attention to the Traite des jluides of 
d' Alembert. 

54 The third chapter of part one of L[eonhard] Euler's Institutiones 
calculi differentia/is deals with the question 'Of Inlinity and the 
Infinitely Small'. For more details see Appendix III. ppl60-164. 

55 This book was assembled by the Abbe Moigno 'following the 
methods and works of Cauchy, published and unpublished'. The frrst 
volume of Moigno'sLectures appeared in 1840, the second in 1844. 

56 This conclusion (due to Newton) requires clarification: 'since the 
numerical quantities of all possible magnitudes may be represented as 
straight lines', the variation of any quantity may be represented as a 
sort of linear motion of variable velocity. And since during an 
infinitely small interval of time the speed of motion can be considered 
to be fixed, then the path, nearly a point, corresponding to this small 
time interval (of course corresponding also to the variation of our 
quantity) is equal to the product of this speed (fluxion) and the 
infinitely small time interval, T. Therefore 'moments, or infinitely 
small portions of the quantities generated = the products of their 
velocities and the infinitely small time intervals'. Regarding the 
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metaphysical nature of Newton's attempt to provide a basis for the 
concepts of 'fluent', 'fluxion', and 'moment', corresponding to our 
'function', 'derivative', and 'differential', defming them in terms of 
mechanics, see Appendix II, ppl56-157. 

57 It was explained in Note 49 that Marx intended to return to the 
illumination of the history of the development of differential calculus 
by means of the example of the history of the theorem on the dif
ferential of a product. So he left a vacant space following his 
unfinished extract from Hind's text. There, after being repeated one 
more time this section is introduced as an example of the very theorem 
on the differential of a product in Newton's treatment. (This theorem 
is introduced as example 3 in Hind's textbook; see Hind, p.I09.) 

58 In Hind's textbook Leibnitz's method is not illustrated in the 
example of the theorem on the differential of a product, so Marx 
turned to Boucharlat's textbook. This paragraph is an extract from 
the latter work (see Boucharlat, p.l65). 
59 This sentence appears in the extract from Hind's textbook cited 
above (Hind, p.l06). Further on, however, Marx does not introduce 
the theorem on the differential of a product as developed by Hind. 
Mter this text follow five pages in Marx's notebook which have been 
omitted (pp.l6-20). They deal primarily with calculations concerning 
theorems on the differentiation of fractional and compound functions 
as well as the solution of problems related to the parabolic curve y 2 = 

ax. We retain only the comments, written at intervals on pp.l6-18, in 
which Marx emphasises the fact that Newton and Leibnitz began 
immediately with the operational formulae of differential calcnlus. 

Then under the rubric 'Ad Newton' Marx subjects these methods 
of Newton and Leibnitz to the criticism that all such methods, not
withstanding all the advantages they bring, inevitably imply the 
introduction of actually inf"mitely small quantities and their attendant 
difficulties. Here again the theorem on the differential of a product is 
used as the basic example. 
60 By x, y, z Newton and his followers usually signified the rate of 
change (fluxion) of the variables x, y, z (fluents) the derivatives, that 
is, of x, y, z, with respect to that variable which plays the role of 
'time'; by LX, L)', 1:Z they designated the 'moments' corresponding 
to the Leibnitzian differentials or infinitely small increments. How
ever, the Newtonians often also used i, y,·z for the 'moments' or 
differentials. See Appendix III p.l60. • I 

I 
:t~ 
l'i 
:~· 
~ 
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61 This discusses the heuristic generalisation where, in the formnla 

y =ax , (I) 

y is simply treated as a certain function f(x), while the constant a 
becomes a new function .f( x) derived from this f( x) ; according to this 
formula (I) becomes a special case of the more general formula 

y = f'(x)x. (2) 

Since x, yare treated as increments, even though infinitely small, the 
factor J'(x) is therefore a function not only of x but als<> of x; the 
'derived' functionf\x) in formula (2) turns out not to be independent 
of x. It is exactly this fact (which compelled the Newtonians to 
suppress forcibly the terms containing x, even though the latter must 
be different from zero for formula (2) to have any meaning) which 
serves as the basis for the critique of the N ewt<>nian definition of the 

derivative of the function y = f(x) as the ratiol!-, to which Marx 
X 

returns several lines below. 
62 That is, obtained in the form of a 'real' expression, not containing 
differential symb<>ls. 

63 Several more lines of unclear meaning are omitted. 

64 If y = x and y itself is x, then in order to obtain an equality in 
which <>ne side does c<>ntain the differential symbol x it is sufficient 
simply to divide both sides <>f the equality y = x by x. 
65 'Zuwachs in x' ('increase in x') obviously signifies here a new 
function in x obtained from the initial function x 2 -in addition to it, 
so to speak- by means of the bin<>mial theorem: as the coefficient dx 
in the expansion of (x + dx) 2

• 

66 Obviously this refers to the fact that the immediate result of the 
application of the binomial is dy = 2xdx + dx2 , not dy = 2xdx. But 
the former equality appears to be mathematically correct only as a 
result of an incorrect premise. 

67 The meaning of the expression 'succeeds in two ways' remains 
obscure. After the col<>n there follows a p<>int a) without a point b). 
Perhaps the 'two ways' here are composed of f"rrst, the fact that on the 

left-hand side the fraction ~ is transformed int<> ;i; (and not 

identified fmm the very beginning with ;tl, and sec<>nd, 



" 
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the fact that on the right-hand side the terms 3xh + h2 are now 
obtained by means of correct mathematical operations and not by 
using some sleight of hand. 
68 The expression in quotation marks has been copied from Hind's 
textbook cited above (§99, pp.128-129). 
69 He obviously has in mind that Taylor's theorem was published in 
his collection Methodus incrementorum in 1715, that is, during the life 
of Newton, in whose works this theorem does not appear. See in 
addition Appendix VI p.182. 
7° For material related to the theorems. of MacLaurin and Taylor, see 
pp.109-119 [this edition], 412,441,493, 498 [Yanovskaya, 1968]. 
71 For Marx's exposition and critique of the fundamental ideas of 
Lagrange's theory of analytic functions, see p.113 of this edition. 
72 This refers to rough-dtaft notes, divided into sections, part of 
which are published in this edition under the general heading 'First 
Draft'. See pp.76-90 of this edition. 
73 In the manuscripts devoted to the history of differential calculus 
there are two passages, located almost immediately adjacent to one 
another, at which Marx proposed to insert: 1) an investigation of the 
theorems of Taylor and MacLaurin and 2) a discussion of Lagrange's 
theory of analytic functions (see p.97). Marx did not succeed in 
accomplishing his intentions, although he had in his possession a great 
deal of material on these subjects which he had collected from his 
sontces and which served as the foundation from which he arrived at 
the point of view on the essence of differential calculus which he 
presented in the works conveyed to Engels. This material is com
prised primarily of outlines but also includes manuscripts containing 
Marx's sununarising or critical comments. The most important of 
these comments are contained in the manuscripts: 1) 'Taylor's 
Theorem, MacLaurin's Theorem, and Lagrange's Theory of Derived 
Functions' (for more details see p.441 [Yanovskaya, 1968]) and 2) 
'Taylor's Theorem' (unfinished), extracts from which are reproduced 
here, in order to amplify somewhat Marx's intentions mentioned 
above. For extracts from other outlines on the same subjects see 
pp.281, 412 [Yanovskaya, 1968]. 
74 In the handbooks on differential calculus at Marx's disposal the 
derivatives of all elementary functions, except for the trigonometric 
ones, were actually calculated. by meaos of the binomial theorem. 
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Marx noted this himself in his manuscript, 'Theorems of Taylor and 
MacLaurin, First Systematisation of Material' (see pp.419-420 
[Yanovskaya, 1968] ). Subsequently Marx formulated for this class of 
tunction a different meaos of differentiation which he called the 
'algebraic' (see the manuscript 'On the Concept of the Derived Func
tion'). Therefore it is clear that the present manuscript 
chronologically precedes 'On the Concept of the Derived Function' 
and 'On the Differential'. 
75 Thus, in Hind's textbook (Hind, pp.84-85), after the example 
containing the derivation of the binomial theorem by meaos of the 
expansion of (x + h)m into the Taylor series there is introduced the 
derivation of the theorems of Taylor and MacLaurin from the 
binomial theorem. 
76 Here (see also p.514 [Yanovskaya, 1968]) Marx says straight out, 
that by 'increment' of the value of the variable x he has in mind any 
change of this value, whether it be a positive or negative increment h . 

77 Because, according to Marx, a function in x is a given expression, 
it represents a combination of symbols which is considered with 
respect to the appearance in it of the variable x. 

In the given case we have before us the terms of the MacLaurin 
series, that is the product ('combination') of the two expressions, 
1) x• (k = 0, 1, 2, 3 ... ) and 2) its corresponding 'constant function' 
Jl'l(O) ...... 
78 Marx calls expressions not containing the variable x 'constant 

functions'ofx. (y), (X), (~)andsoonareexpressionsfor.f(x) and 

its successive derivatives in which all appearances of the variable x 
have been replaced by a constant - zero. The result of this sub

stitution in y and in its corresponding derivative ~ is designated in 

the manuscripts as (y) and, correspondingly, (~)· This desig

nation, which Marx borrowed from Boucharlat (see Boucharlat, 
p.40), has been preserved in this edition. 
79 Marx does not explain what exactly he meaos here by 'the irrational 
natUte of the constant (or variable) function'. Apparently it deals with 
the fact that in both cases the cause of the origin of 'exceptions' is the 
presence in the expansion of terms having no rational mathematical 

,. meaning: in the ftrst case without any continuity (such as, for exam-
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pie, a 'fraction' of the form 8), and in the second without defmed 

values of the variable x (sue!:> as, for example,x~ a at x =a). The 

'irrationality' of such an expression does not imply that it necessarily 
contains a radical sign (compare 'algebraic irrationality'), but is used 
as the opposite of intelligibility (rationality; compare the 'rational 
differential calculus of Euler and d' Alembert' with the opposite 'mys
ticism of Newton and Leibnitz'!). Marx gives a short general charac
terisation of cases of inapplicability at the very end of the manuscript, 
'Theorems of Taylor and MacLaurin, First Systematisation of 
Material' (see pp.440 [Yanovskaya, 1968]). 
80 

By 'representation in a finite equation' here is obviously meant a 
representation of the form 

f(x+h) =P0 +P1 h+P2 h'+ ... +P.h", 

where n is a positive integer, and P,(i = 0, I, 2, ... n) are functions 
of x. 
81 

For a more detailed exposition of the proof of Taylor's theorem 
contained in the sources used by Marx, an exposition necessary in 
order to understand the critique to which Marx subjected it in the 
following lines, see Appendix VI, p.l82. 
82 

This is an excerpt from the manuscript 'Taylor's Theorem', which 
is inserted here because it contains in a more concentrated form 
Marx's viewpoint on the insufficiency of the proof known to him of 
Taylor's theorem, on its 'algebraic' origin in the binomial theorem, 
and on its essential difference from the latter (for more details on the 

. unfinished 'Taylor's Theorem' see p.498 [Yanovskaya, 1968] ). Since 
the first paragraph of this extract presents difficulties in reading it in 
isolation from the preceding text, we note here that in this paragraph 
Marx summarises the results of the previous section devoted to the 
critique of the proof of Taylor's theorem in Hind's book. In it (see 
Hind §74, pp.83-84; §§77-80, pp.92-96): 

1) Taylor's theorem is proved under the assumption that the expre
ssion f(x + h) may be expanded into a series of the form: 

f(x+ h)= Ph"+ Qh~+ Rhy+ ... , 

where P, Q, R, . . . are functions of the variable x and the exponents 
a, ~. y .•. are increasing positive integers. 

2) The 'cases of inapplicabiliiy' of Taylor's theorem are considered, 
with the result that for certain specific values of the variable x these 
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conditions are not fulfilled (some of the coefficients P, Q, R . .. are 
not defined - 'do not have finite values' at these points). 

3) The attempt is made, following Lagrange, to show that, 
generally speaking, excluding, that is, certain specific values of the 
variable x, the conditions under which Taylor's theorem has been 
proved (the exponents <:I,~. y ..• cannottakeonnegativeorfractional 
values, the functions P, Q, R. . . are not transformed 'into infinity') 
are fulfilled for any function f(x). Mter this come Marx's remarks 
devoted to the insufficiency of this sort of attempt. 
83 The words 'x = a, for example' refer to the example, examined by 
Hind, of the expansion into a Taylor series of the expressionf(x + h) 
where f(x) = x2 + ~ x- a. At x = a the expression has the intel
ligible value (a+ h) 2 + Jh, but the terms of the Taylor series rep
resenting it give, according to Hind, only 'a 2 + 2ah 
+ h2 + 0 + oo- oo + oo- etc., not at all defined' (see Hind, p.93). 
84 In thefunctiony = f(x), wherey1 = f(x +h) is oulythesymbolic 
expression of a binomial of a certain power, one here naturally has in 
mind the function y = xm, where m is a positive integer. 
85 A literal translation of this passage would be, 'which in the course 
of differentiation can give no result' (die auf dem Weg der Dif
ferentiation kein Resultat lief ern kiinnen). 
86 Literally: 'in the possible historical part of this manuscript' (beim 
etwaigen historischen Teil dieses Manuscripts). 
87 In the manuscript 'On the History of Differential Calculus' Marx 
notes that from the simple difference in the form of representation of 
the change in the value of the function originate essential differences 
in the treatment of differential calculus (see p.l02). Regarding this he 
made reference to the 'introductory pages' in which he developed this 
thought 'in the analysis of d' Alembert's method' (see ibid.) These 
sheets are of two groups: sheets of one group are marked with the 
capital Latin letters A to H (see p.471 [Yanovskaya, 1968]), and 
sheets of the other group with small Latin letters from a ton (see p.498 
[Yanovskaya, 1968]). 

Since d' Alembert defines the derivative by means of the concept of 
limit, Marx naturally begins his analysis of the method with a critique 
of the concept of limit, the inadequacy of which is made clear with the 
material presented in Appendix I (see 'Concerning the Concept of 
"Limit" in the Sources Consulted by Marx', p.l53). This part of the 
manuscript occupies sheets A to D (published under the title cor
responding to its contents, 'On the Ambiguity of the Terms "Limit" 
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and "Limit Value" '). Also directly related to the above-mentioned 
passage in the manuscript on the history of differential calculus are 
sheets E to H, published here under the title, 'Comparison of d' Alem
bert's Method to the Algebraic Method'. And devoted to essentially 
the same question are sheets a to g of the other group, which are 
published here under the title 'Analysis of d'Alembert's Method by 
Means of yet Another Example'. (For the contents of the remaining 
sheets of this group see pp.468-470 [Yanovskaya, 1968].) In con
formity with Marx's reference to the appended separate sheets 
devoted to the analysis of d' Alembert's method, they are grouped 
together here under the general title, 'Appendices to the Manuscript 
"On the History of Differential Calculus": Analysis of d' Alembert's 
Method' (ppl21-132). 
88 In other words, it is proposed to consider here the expression 
3x2 + 3xh + h2 for non-negative values of x and h under the assump
tion that. h tends unboundedly towards zero, remaining different 
from zero. We recall that in the sources which Marx used there was as 
yet no concept of absolute value, so that he was not required to 
consider the sum of all non-negative terms. 

89 Here Marx comes to the basis for his later conclusion, that 'the 
concept of the limit value may be interpreted wrongly, and is con
stantly interpreted wrongly' (see p.l26), as a consequence of which it 
is appropriate to replace it by some new term which is unambiguously 
understandable. As such he proposes the term 'absolute minimal 
expression', by which is meant the limit in the usual present-day 
meaning of the word (see p.l26 and Appendix I, p.l43). Marx's 
criticism of the 'limit value' defined here and of the way this concept is 
used in Hind's and Boucharlat's textbooks refers first of all to the fact 
that the 'limit' is corisidered there as actual; that is, it is regarded as 
'the last' value of the function for 'the last' value of the argument, and 
therefore represents 'a childishness which has its origin in the first 
mystical and mystifying method of calculus' (see p.l26). In this 
particular paragraph he obviously has in mind the 'limit value' in the 
meaning of the definition introduced by Hind (see Appendix I, 
p.l45), who in practice treats it as coinciding with the one-sided limit 
of a function where the argument approaches a certain number from 
the right or from the left: in the given case, with the one-sided limit 
from the right of the function 3x2 + 3xh + h2 , considered as a func
tion of hash-> +0. In contras.t to Hind, however, Marx emphasises 
that this 'limit value' only has meaning if it is not understood as taking 
place but is calculated with the condition that h 'i 0 (here h > 0); 

,_ 
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that is, he treats it exactly as we do today. At the same time the 
application of this to the function in consideration, 3x2 + 3xh + h2·, 

does not violate the requirement contained in the definition of 'limit 
value' (as the exact upper or lower bound to the value of the variable) 
with which Hind's textbook begins. In fact, as Marx notes, this 
function firstly, as h approaches zero, constantly approaches its own 
limit (the lower one, clearly), and secondly, consequently all the more 
never passes beyond it; that is, it explicitly satisfies both conditions of 
Hind's definition (Hind himself usually did not verify the satisfaction 
of these requirements; see Appendix I, p.l45). 

90 If the (one-sided) limit of the function 3x2 + 3xh + h2 at the 
approach of h to zero (from the right; that is, as h decreases) is 
interpreted actually, that is, the argument h is supposed to attain its 
limit ('last') value 0, then from the multiplicity of values of the 
function with respect to which, according to Hind's definition, the 
limit must be the exact lower bound, it is sufficient to choose the set 
consisting of only the one value of the function at h = 0 (see Appendix 
I, p.l45), in the given case consequently of only one number 3x2 -

which, however, as Marx says below, it would be a 'well-worn tautol
ogy' to regard as the limit value for 3x2 as h approaches zero . .In other 
words, to speak naturally of 3x2 as the limit value of 3x2 + 3xh + h' 
as h approaches zero at the same time as regarding 3x2 as the limit 
value of 3x2 itself as h approaches zero is not intelligible here- most 
of all because it is in general superfluous: it gives us nothing new. 

91 This expression %is considered here to be the_ limit of the quotient 

y,-Y, as was done similarly in Boucharlat's textbook (see Appendix 
X 1 - x 

I, p.l49), but with the difference that here the limit value (here again 
inHind'ssense)ofthefunctions x 1 - x andy,- y as x 1 -> +xis not 
understood by Marx in an actual sense, that is, it remains an assump
tion that x 1 7' x (here x 1 > x). 

92 Here again reference is made to the fact that g (or~) is impossible 

to interpret actually, that is, as the value of the ratio y, h Y at h = 0, 

since in that case, following Hind and obtaining the limiting expres

sion ~ by simply supposing h = 0, one would have to admit that the 

consideration of this expression, in which no trace remains of the ratio 

Y' h Y which contained the variable h, as the limiting value for the 
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same ~(regarded as the 'constant' function of h) as h --> +0, in 

general gives no new result. However, for the expression y,; Y when 

considered for h distinct from zero (here h> 0), it is precisely ~which, 
standing opposite the derived function 'as its real equivalent', is, as 
Marx. says, 'its absolute minimal expression', that is, the limit in the 
usual present-day sense. 

93 The original had iuitially: 'applied in the above differential 
equations' (auf obige Differentialgleichungen), but Marx crossed out 
the word 'obige'. It is however clear that here as previously, this does 
not concern equations in the proper sense of the word, but rather the 
fundamental formulae of differential calculus having the form of 
equalities. 

94 Here Marx wrote, ' ... to the geometric', a clear slip of the pen. 

95 As already noted, the source-books employed by Marx did not 
consider zero a finite quantity. Therefore this passage states that 
however small the difference, x 1 - x = h becomes, it always remains 
different from zero. · 

96 Here Marx writes simply x + x instead of x + TX. Concerning the 
origins of sucll replacement, see pp. 78-79 of this edition as well as note 
60. 
97 These notes represent the contents of sheets a to g. Sheets h to n, 
contaiuing ouly first-draft fragments or unfinished notes the sense of 
which is hard to make out, are not publislled here; concerning them 
see the Description, pp.468-470 [Yanovskaya, 1968]. Sheets a tog are 
devoted to an analysis of d' Alembert's method applied to the same 
example of a compound function which Marx considers in the man
uscript 'On the Differential'. 

98 The symbols f(x), f(u) are employed here as contractions for the 
expressions, 'some function in x' and 'some(other)functionin u'". In 
the manuscript 'On the Differential' wrinen later, Marx already 
designates these functions with different leners in the analysis of the' 
same example; 

Additional material 
on Marx's Mathematical Manuscripts 

die 



E. Kol'man 

Karl Marx and Mathematics: 
on the 'Mathematical Manuscripts' of Marx* 

The creation of the scientific theory of the revolutionary struggle of 
the international proletariat to overthrow the capitalist systetn and to 
construct socialism made it necessary, as Marx himself indicated, to 
examine social conditions from the point of view of materialism and 
dialectics. These must be deduced from the entire complex of real 
phenomena and verified by the manifold totality, both of the facts of 
history and of the reality of nature, society and human thought. Thus, 
one of the necessary prerequisites for the creation of scientific com
munism was the mastery of the sciences which study the governing 
laws of the development of nature, the mastery of their results and 
methods. At the same time the study of the natural sciences, and 
mathematics as well, from the point of view of their history and 
interaction with the economic development of society, was necessary 
for the practical activity of the proletariat as a class coming to power in 
order consciously to transform society. 

With respect to mathematics, dialectical materialism had to solve 
two closely interrelated probletns. On the one hand, it was necessary 
to generalise the results of mathetnatics philosophically, and to incor
porate thetn in the scientific world view, the world view of dialectical 
materialism. On the other hand, the method of materialist dialectics 
should be used to illuminate the crucial problems of mathematics, 
thereby eoriching the dialectic method. In large measure this work 
fell to the share of F[riedrich] Engels, since Marx was almost com
pletely occupied with the validation of the laws of the economic 
development of capitalism and with the practical guidance of the 
international workers' movement. In spite of this Marx persistently 
kept track of the progress of natural sciences and the technical 

~slation of 'K.Marks i Matematika (0 'Matematicheskikh rukopisyakh' K. 
Marksa)', Voprosyistorii estest'Diznaniya i tekhniki, 1968, No.25, pp.lOl-112. 
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achievements of his times, and for almost thirty years, from the late 
[18J50s right up to his death, was occupied with mathematics a great 
deal. 

These studies were reflected in a number of observations scattered 
throughout the works of Marx, both on the influence of mathematics 
on philosophy and on the philosophic elucidation of specific problems 
of mathematics. In addition, they were expressed in his wide-ranging 
correspondence, particularly with Engels. Then they were used by 
Marx in the preparation of his most important work, Capital. Finally, 
the results of his studies were preserved in the extensive manuscripts 
left behind on Marx's death. These papers were devoted to various 
problems of mathematics and its history, primarily the problem of the 
logical and philosophic basis of the differential calculus. 

Marx had two motives for his mathematical studies: political 
economy and philosophy. 

Although Marx repeatedly emphasised the specific nature and 
extraordinary complexity of economic phenomena and the impos
sibility of comparing them to biological, still less physical, 
phenomena, nonetheless he considered the application of 
mathematics not ouly possible but indeed necessary for the inves
tigation of the general laws of economics. In Capital Marx employed a 
mathematical form in writing down economic laws, by no means 
solely for illustration. The analysis of the form of value and money, 
the composition of capital, the rate of surplus value, the rate of profit, 
the process of transformation of capital, its circulation and turnover, 
its reproduction, its accumulation, loan capital and credit, differential 
rents: -Marx accomplished all of this by employing mathematics. 
Proceeding by means of the simplest algebraic transformations from 
one formula to another, he next analysed them, interpreted them 
economically, and formulated new laws. By just such means, for 
example, Marx derived the dependence of the rate of profit 

P- M 
- (C+V) 

(where C is constant capital, V is variable capital, and M is surplus 
value)* on the organic composition of capital 

o=f v 
* Constant capital is capital investment; variable caPital is labour wages; surplus value 
is usually written S in English-language economic texts - Trans. ' 

AD~ITIONAL MATERIAL 

so that 
A 

P= --
1+ 0 
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(where A = W is the rate of production of surplus value), and 

established the law of the tendency of the average rate of profit to fall. 
By the very same means he established the inter-relation between the 
twO sectors of capitalist reproduction: the first sector is the production 
of the means of production: 

C,+ V1 + M, = T, 
(where T 1 is the total value of the producers' goods sector), and the 
second sector is the production of the means of consumption, 

C2 + V 2 + M 2 = T 2 , 

so that, for simple reproduction,* 

c, = v,- M,. 

He discovered thereby the general law of the formation of the costs of 
production and the economic 'mechanism' inevitably leading, under 
conditions of premonopolistic capitalism, to strongly periodic 
economic crises. t 

The still unpublished preparatory works to the third volume of 

Capital contain Marx's detailed calculations of the quantity f+ g , the 

difference of the rate of suwlus value A and the rate of profit P, 
where Marx represented it; variations in the form of a variety of 
curves. Since the third volume of Capital, which is devoted to the 
process of capitalist production taken as a whole, is a synthesis of the 
first volume - the immediate process of the production of capital -
and the second volume - the process of transformation of capital -
Marx tried in his rough drafts to supplement the complete and com
prehensive qualitative picture provided in his previous work with a 
quantitative picture. 

Marx did not bring this work, which even in the case of simple 
reproduction demands rather complicated, although elementary, 
computations, to completion. The work, however, correctly posed 

* In simple reproduction all the value added to the producers' goods is invested in the 
machinery to produce consumers' goods - Trans. 
t The significance of these schema for socialist economic planning is examined in the 
work of M. Ebeseldt (GDR), 'Marx's Schema of Reproduction and the interpretation of 
Ambiguous Variables', (in Russian)Ekonomika i matemaricheskie metody, 1968, Vol ,IV, 
No.4, pp.531·535. 
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the problem of the distribution of surplus value (in the costs of 
production) under conditions of large-scale reproduction in both 
sectors in order to obtain maximum profits and also derived the law of 
periodic crises. These are problems which can only be solved by 
means of contemporary methods of linear programming. The 
mechanism of economic crises, however, can also be studied 
empirically, a method concerning which Marx wrote to Engels on 
May 31, 1873: 

'I have just sent Moore a history which privatim had to be smuggled 
in. But he thinks that the question is unsolvable or at least pro 
tempore unsolvable in view of the Iilany parts in which facts are still 
to be discovered relating to this question. The matter is as follows: 
you know tables in which prices, calcnlated by percent etc. etc. are 
represented in their growth in the course of a year etc. showing the 
increases and decreases by zig-zag lines. I have repeatedly 
attempted, for the analysis of crises, to compute these "ups and 
downs" as fictional curves, and I thought (and even now I still 
think this possible with sufficient empirical material) to infer 
mathematically from this an important law of crises. Moore, as I 
already said, considers the problem rather impractical, and I have 
decided for the time being to give it up.'* 

The mathematician Samuel Moore, who was Marx's adviser in 
mathematics, was unfortunately not sufficiently well versed; he was 
obviously unacquainted with Fourier analysis, that branch of applied 
mathematics which deals with the detection of latent periodicities in 
complex oscillatory processes, the foundations of which were already 
contained in J. Fourier's 1822 work, Analytic Theory of Heat. 

Since Marx believed, according to Pan! Lafargue, t that 'a science is 
not really developed until it has learned to make use of mathematics', 
he advanced the thesis of the possibility, indeed the necessity, of the 
application of the mathematical method to research in the social 
sciences, in political economy in particnlar. At the same time this did 
not mean the replacement of political economy and its general laws 
and methods by mathematics along the lines of the so-called 
'mathematical school' of vulgar political economy, headed in England 
by W. Jevons and in Italy by V. Pareto and others, which had sprung 
up in the [18] 80s in opposition to the bankrupt 'historical school' but 

* Karl Marx-Friedrich Engels Werke [German edition], Vol.33, Berlin, Dietz, 1966, 
p.82. . 

t Reminiscences of Marx and Ef!Kels, Moscow [1956], p.75. 
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which, like the latter, also argued for a 'harmony of interests' of all 
classes of capitalist society. Marx made the following observation, in a 
letter to Engels on March 6, 1868, regarding one of the representatives 
of this school, Macleod: ' ... a puffed-up ass, who I) puts every banal 
tautology into algebraic form and 2) represents it geometrically.'* 
Thus, according to Marx, as in any other specialised science so in 
political economy, mathematics can be a powerfnl tool for research 
only within the limits of the validity of the theory of that specialised 
science. Therefore, as his acquaintance the Russian jurist and pub
licist M.M. Kovalevskii wrote, t Marx devoted himself to the study of 
mathematics in order to obtain the ability to apply the mathematical 
method as well as to examine profoundly the works of the 
mathematical school. 

Marx's considered judgement on one of the most important prob
lems of the foundations of geometry, which he expressed in 'The 
Theory of Surplus Value', the unfinished 4th volume of Capital, in 
connection with a polemic with [Samuel] Bailey, who had incorrectly 
used the geometric analogy, may serve as an example of his 
philosophical conclusions on the questions of mathematics. Marx 
wrote: 

'If a thing is distant from another, the distance is in fact a relation 
between the one thing and the other; but at the same time this 
distance is something different from this relation between the two 
things. It is a dimension of space, it is a certain length which may as 
well express the distance of two other things besides those com
pared. But this is not all. When we speak of the distance as a 
relation between two things, we presuppose something 
''intrinsic", some ''property'' of the things themselves, which 
enables them to be distant from each other. What is the distance 
between the syllable A and the table? The question would be 
nonsensical. In speaking of the distance of two things, we speak of 
the difference in space. Thus we suppose both of them to be 
contained in space, to be points of space. Thus we equalise them as 
being both existences of space, and only after having them 
equalised sub specie spatii we distinguish them as different points of 
space. To belong to space is their unity.'§ 

* Karl Marx-Friedrich Engels Sochineniya [Russian edition], Moscow, Vo1.32, p.33. 

t Reminiscences of Marx and Engels, p.325. 

§ Karl Marx, Theories of Surplus Value: Volume IV of Capital, part III, Cohen and 
Ryazanskaya, trans., London, Lawrence & Wishart, 1972, p.l43. Editors 
Ryazanskaya and Dixon note that 'Marx wrote this paragraph in English'. 
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Here Marx, while analysing the process of abstraction by means of 
which the geometric concept of 'distance' or 'length' originates, 
focuses attention not only on the materialistic origin of this concept, 
the basis of which lies in the 'characteristic' of two comparable 
objects, but also on its relative character, on its indissoluble con
nection with space, understood as a material, really existing entity. 
And all this was in 1861-1863, during the unbroken predominance in 
science of the Newtonian world view, some forty years before the 
appearance of the theory of relativity, in which Einstein boldly took to 
its logical conclusion the idea that 'length' is not simply a superficial 
abstract measure of a physical body but an integral characteristic of 
the spatial relationship of two bodies. 

Marx's statement on the statistical nature of economic mechanisms 
as mechanisms of large-scale processes has an exceptionally great 
methodological significance for mathematical statistics. These 
mechanisms express the interactions of individual processes in the 
laws of probability; they dominate over any variations from the mean. 
Marx repeatedly returned to this problem. For example, in the Grun
drisse of 1857-1858 he wrote, in the chapter on money: 

'The value of commodities as determined by labour time is only 
their average value. This average appears as an external abstraction 
if it is calculated out as an average figure of an epoch, e.g. a pound 
of coffee is one shilling if the average price of coffee is taken over, 
let us say, 25 years; but it is very real if it is at the same time 
recognised as the driving force and the moving principle of the 
oscillations which commodity prices run through during a given 
epoch. This reality is not merely of theoretical importance: it forms 
the basis of mercantile speculation, whose calculus of probabilities 
depends both on the median price averages which figure as the 
centre of oscillation, and on the average peaks and average troughs 
of oscillation above or below this centre.* 

Despite the misconception, current for a long time among the 
majority of Marxists working in the field of economic statistics, that 
Marx's statements on stochastic processes apply only to capitalist 
economics, a misconception based on the non-dialectical rep
resentation of the accidental and the necessary as two mutually exclu-

---
* Karl Marx, Grundrisse: Foundations of the Critique of PoliticalE,onomy, trans. M. 
Nicolaus, Penguin Books, London, p.137. 
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sive antitheses, these statements of Marx - to be sure, in a new 
interpretation - have enormous significance for a planned socialist· 
economy, in which, since it is a commodity economy, the law oflarge 
numbers never ceases to'-operate. 

Hegel's Science of Logic, especially the second section to the first 
book, 'Quantity',· was undoubtedly a philosophical stimulus for 
Marx's mathematical studies. The article 'Hegel and Mathematics', 
written by the present author together with S.A Yanovskaya,* cites 
in this connection the following words of Engels: 

'I cannot fail to comment on your remarks on the subject of Old 
Man Hegel, to whom you do not attribute a profound 
mathematical and scientific education. Hegel knew so much 
mathematics that not one of his students was capable of publishing 
the numerous mathematical manuscripts left behind after his 
death. The only person, so far as I know, sufficiently know
ledgeable of mathematics and philosophy to perform such a task
is Marx.'t 

In the 'Philosophical Notebooks' V.I. Lenin criticised§ the 
statements of Hegel on the calculus of infinitesimally small quantities 
contained in the chapter 'Quantity', specifically, that ' ... the jus
tification [for neglecting higher-order infmitesimals - E.K.J has 
consisted only in the correctness of the results ("demonstrated on other 
grounds") . . . and not in the clearness of the subject . . .', that 
' ... a certain inexactitude (conscious) is ignored, nevertheless the 
result obtained is not approximate but a~solutely exact,' that 'not
withstanding this, to demand Rechtfertigung [justification- Trans. J 
here is "not as superfluous" "as to ask in the case of the nose for a 
demonstration of the right to use it".'** V.I. Lenin made the following 
remarks: 'Hegel's answer is complicated, abstrus, etc. etc. It is a 

* This edition p.235 

t Afterword to 2nd German edition of Capital 

§ V.I. Lenin, CoUecud Works, Vol.38, Moscow, Foreign Languages Publishing 
House, 1963, pp.ll7-118. 

** Note provided by editor of Lenin text: 'An allusion to the couplet "The Question of 
Right" from Schiller's satirical poem "The Philosophers", which may be translated as 
follows: 

'Long have I used my nose for a sense of smell, 
'Indeed, what right have I to this, pray tell?' 
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question of higher mathematics . . . ' 'A most detailed consideration of 
the differential and integral calculus, with quotations - Newton, 
Lagrange, Carnot, Euler, Leibnitz etc., etc.- showing how interes
ting Hegel found this "vanishing" of infinitely small magnitudes, this 
"intermediate between Being and non-Being". Without studying 
higher mathematics all this is incomprehensible. Characteristic is the 
title Carnot: "Reflexions sur Ia Metaphysique du calcul 
infinitesimal"!!!' 

It is undoubtedly true that Marx, who had written in 1873: 

'The mystification which the dialectic suffered at the hands of 
Hegel does not obscure the fact that Hegel first gave a com
prehensive and conscious representation of its general forms of 
motion. It is necessary to stand it on its feet, in order to reveal the 
rational kernel beneath the shell of mystification.'* 

having alteady applied his dialectical materialist method which, in his 
OWll words, was not only fundamentally'different from the Hegelian, 
but is its direct antithesis', since for Marx 'the ideal is nothing other 
than the material, perceived in a human head and transformed within 
it', t was extremely tempted to try to discover the secret which seemed 
to lie at the basis of differential calculus. 

Marx's studies of mathematics were knoWll from his cor
respondence with Engels, particularly the letters from Marx to Engels 
of January 11, 1858, May 20 1865, July 6, 1863, and August 25, 1879, 
thelettersfromEngels to Marx of August 18, 1881 andNovember21, 
1882, and Marx's answer of November 22, 1882. They may also be 
evaluated from references in Engels's preface to the second volume of 
Capital, comments in Engels's Anti-DU7zring, and in his unfinished 
manuscript, The Dialectics of Nature, published for the first time in 
1925 in Moscow in the second book of the [Russian-language] 
Archives of Marx and Engels. The Karl Marx-Friedrich Engels Insti
tute, which was founded in 1920, in carrying out the instructions of 
V.I. Lenin in his letter of February 2, 1921§ to purchase the man
uscripts of Marx and Engels located abroad (or photocopies of them), 
acquired a great many, including photocopies of Marx's mathematical 
manuscripts preserved in the archive of the German Social-

* Karl Marx·Friedrich Engels, S{)(jhineniya, Vo1.23, p.22. 
t IbUi. 
§ Leninskii Sbomik, Moscow,J942, Vol. 34, pp.401-402. 
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Democratic Party - 863 closely-written quarter-sheets, apparently 
incomplete; the missing pages were later added, however, sothar the 
entire collection came .to a thousand sheets. To work on them the 
Institute commissioned the German mathematician E.Gumbel, 
whom R. Mateika and R.S. Bogdan helped to decipher the extremely 
difficult text. 

In 1927 Gumbel published a report in Letopisi Marksizma on the 
manuscripts,* giving a short description of them. He classified ·the 
manuscripts into categories: calculations without any text at all; 
extracts from works read by Marx; outlines of his OWll works; and 
finally, finished original works. 

Gumbel correctly noted that Marx's choice of sources seemed to be 
influenced by Hegel, and he presented a (far from complete) list of 
mathematical works which Marx had summarised: 13 authors and 18 
titles. Of these works, the oldest in time was the Philosophiae. 
Natura/is Principia Mathematica of Newton, 1687, and the most 
recent, the textbooks ofT.J. Hall and J.W. Hemmings, 1852. They 
also included the classical works of d' Alembert, Landen, Lagrange, 
MacLaurin, Taylor and two other works of Newton, De Analysi per 
Aequationes Numero T erminorum I nfinitas andAnalysis per Quantitatum 
Series, Fluxiones et Differentias. 

The contents of the manuscripts, Gumbel indicated, dealt with 
arithmetic (for example, the effect of a discount on the rate of 
exchange, the paying off of a bill of exchange, discounts and rebates, 
raising to a power and extracting the root of an equation, exercises in 
taking the logarithm, aJ¥1 so forth), geometry (trigonometry, analytic 
geometry, conic sections), algebra (the elementary theory of 
equations, infinite series, the concept of function, Cardan's- Rule, 
progressions, the method of indeterminate coefficients), and dif
ferential calculus (differentiation, maxima and minima, the Taylor 
theorem). He reported that the original works which Marx had com
pleted would be published in the 16th volume of [the Russian edition 
o~ the Complete Works of Marx and Engels. 

In 1931, with the appointment of the well-knoWll activist of the 
Bolshevik Party V. V. Adoratskii to be director of the Institute, work 
on the manuscripts was given a new direction. As head of the Marx 
Study Centre at the time, I was acquainted with the transcribed 

* E. Gumbel, 'On the Mathematical Manuscripts of K. Marx', (in Russian) Letopisi. 
Marksizma, Moscow, 1927, Vol.3, pp.56-60. 
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portion of the manuscripts and with the preparatory work toward 
their publication, and I was convinced that E. Gumbel was unable to 
appreciate completely either the importance of their publication or 
their philosophical and historical-mathematical significance. At my 
suggestion the board of directors of the Institute enlisted for the work 
on the manuscripts S.A. Y anovskaya, leading a team which was 
joined by the mathematicians D .A. Raikov and A.l. N akhimovskaya. 

In London in 1931 the Second International Congress of the His
tory of Science and Technology took place, at which a Soviet deleg
ation took part whose members included the author of these lines. 
The papers of our delegation came out as a separate book with the title 
Science at the Crossroads.* Among the papers included was my own, 
entitled: 'A Brief Report on the Unpublished Works of Karl Marx 
pertaining to Mathematics, the Natural Sciences, Technology and 
Their Histories'. This report discussed: first, the passages from 27 
works of natural science which Marx copied and to which he supplied 
commentaries: on mechanics, physics, chemistry, geology, biology, 
as well as on electrical technology, metallurgy, agricultural chemistry, 
and others; second, his works on technology (primarily dating ·to 
1863), treating the history of mills, the history of looms, the problem 
of automated production in mechanised factories, the development 
from tools to machines and from machines to mechanised factories, 
the effect of the mechanisation and rationalisation of production on 
the development of the textile industry in England and on the situ
ation of the proletariat in the period 1815-1863, the changes in the 
social system of production at various stages of technological 
development, the interaction between labour• and science, between 
city and countryside, and so on; and third - Marx's mathematical 
manuscripts. 

In Zurich in 1932 there convened an International Congress of 
Mathematicians in which a Soviet delegation took part. At the 
'Philosophy and History' section of the congress I made the report, 'A 
New Foundation of the Differential Calculus by Karl Marx'.,t which 

* Sciince at the Crossroads: Papers presented, to the International Congress of the 
History of Science and Technology held in London from June 29th to July 3rd, 1931, 
by the Delegation of the USSR, Kniga Ltd., Bush House, Aldwych, London WC2, 
1931. Republished in 1971. 

t E. Kol'man, 'A New Foundation of the Differenti~ Calculus' by Karl Marx', [in 
German], V erhandlungen des lnternationalen Mathematiker-Kongre1ses, Vo1.2, 
Sektions-Vertnige, Zurich, 1932, pp.349-351. 
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discussed one of the works contained in Marx's manuscripts. It was of 
great interest, both for the history of mathematics and for those 
dealing with the philosophical problems of the scientific worker, since 
it contains a sketch of the historical development of the concept of the 
differential and a statement of Marx's viewpoint on the foundation of 
analysis. This work is of the third category of the manuscripts, and 
consists of five chapters: I. The Derivative and the Differential 

Coefficient [the at that time so-called ratio, ;i, 2. The Differential and 

Differential Calculus, 3. The Historical Development of Differential 
Calculus, 4. The Theorem of Taylor and MacLaurin, 5. A Critique of 
Newton's Method of Quadratures. 

The first part of the third chapter, which forms the nucleus of the 
entire work, contains a brief account of the methods of Newton, 
Leibnitz, d' Alembert and Lagrange. The second part, which sum
marises the first, consists of three sections with the following con
tents: I. Mystical Differential Calculus, 2. Rational Differential Cal
culus, 3. Purely Algebraic Differential Calculus. In another fragment 
Marx contrasts his own differential method to the methods of 
d' Alembert and Lagrange. His method differs from the method of 
Lagrange because Marx really differentiates, thanks to which dif
ferential symbols appear, while Lagrange applies differentiation to the 
algebraic binomial expansion. 

It is clear from both fragments that Marx, like Hegel, considered all 
efforts to provide a purely formal-logical foundation for analysis 
hopeless, just as the attempts to give, beginning with the graphic 
method, a purely intuitive-visual foundation to it had been naive. He 
set himself the task of providing a foundation for analysis dialec
tically, relying on the unity of the historical and logical aspects. 

Marx demonstrated both that the new differential and integral 
calculus came into existence from el(:mentary mathematics, on its own 
ground, 'as a specific type of calculation which already operates 
independently on its own ground,' and that 'the algebraic method 
therefore inverts itself into its exact opposite, the differential 
method'. (See p.21 in this edition.) Marx valued highly the work of 
Lagrange, but he did not consider him- as he was usually considered 
and as Hegel considered him- a formalist and conventionalist who 
introduced the basic concepts of analysis into mathematics in a purely 
superficial and derivative manner. Marx appreciated just the opposite 
in Lagrange, namely, that he revealed the connection between algebra 
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and analysis, that he showed how analysis develops out of algebra. 
'The real and therefore the simplest connection of the new with the 
old is discovered as soon as this new reaches its completed form, and 
one may say that differential calculus gained this relation through the 
theorems of Taylor and MacLaurin.' (See p.ll3) 

At the same time, however, Marx reproached Lagtange for not 
perceiving the dialectical character of this development, for sticking 
for too long to the domain of algebra, and for insufficiently 
appreciating the general laws and methods proper to analysis, so that 
'in this regard he should ouly be used as a starting point'. (See 
Yanovskaya, 1968, p.417) Thus Marx, like a genuine dialectician, 
rejected both the purely analytic reduction of the new to the old 
characteristic of the methodology of the mechanistic materialism of 
the 18th cenrury, and the purely synthetic introduction of the new 
from outside so characteristic of Hegel. 

Reports and articles concerning Marx's mathematical manuscripts 
also appeared in 1932 in the journals Za Marksistsko-Leninskoe 
Estestvoznanie, Vestnik Kommunisticheskoe Akademii, and Front N auki 
i Tekhniki. * There was a great deal of interest in the manuscripts 
among the Soviet, as well as the foreign, learned public. Ouly in 
1933,t however, did it become possible, as a result of the work of the 
team of scholars mentioned above, to publish the first extracts from 
the manuscripts, in the journal Pod Znamenem Marksizma and simul
taneously in the collection Marksizm i Estestvoznanie, issued on the 
50th anniversary of Marx's death by the Marx-Engels Institute. In 
both publications, the extracts from the manuscripts were accom
panied by the article 'On the Mathematical Manuscripts ofK. Marx'§ 
by the team leader S.A. Y anovskaya. The published extracts are three 
works of Marx dating from the [18J70s and the beginning of the 
[18]80s. Marx completely finished and prepared to send to Engels the 
first two - 'The Derivative and the Symbolic Differential Coef
ficient' and 'The Differential and Differential Calculus'. The third 
work, 'A Historical Sketch', is an unfmished draft. From the latter, 
which includes the sections: 1. Mystical Differential Calculus (that is, 

* Za Marksistsko-Leninskoe Estestvoznanie, 1932, No.S-6, pp.l63-168; Vestnik Kom
munisticheskoi Akademii, 1932, No.9-10, pp.l36-138; Front Nauki i Tekhniki, 1932, 
No.IO, pp.65-69. 

t The original has 1932, an obvious misprint. 

§ Pod znamenem marksizma, 1933, No.1, pp.l4-115; Marksizm i estestvoznanie, 1933, 
pp.l36-!80. 
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Newton and Leibnitz), 2. Rational Differential Calculus (that is, 
d' Alembert) and 3. Purely Algebraic Differential Calculus (that is, 
Lagrange); we introduce here in the team's translation, section 1, in 
order to acquaint the reader with Marx's exposition. (pp.91-92) 

'I. Mystical Differential Calculus. x 1 = x + fu from the begin
ning changes into x 1 = x + dx or x + x [Marx uses both the 
symbol dx ofLeibnitz and the x of Newton- E.K.J where dx is 
assumed by metaphysical explanation. First it exists, and then it is 
explained. 

'Then,however,y 1 =y+ dy ory 1 =y+ y. Fromthisarbitrary 
assumption the consequence follows that in the expansion of the 
binomial x + fu or x + x, the terms in x and fu which are 
obtained in addition to the first derivative, for instance, must be 
juggled away in order to obtain the correct result, etc. etc. Since the 
real foundation of the differential calculus proceeds from this last 
result, namely from the differentials which anticipate and are not 

derived but instead are assumed by explanation, then ddcv or~ , as 
X X 

well, the symbolic differential coefficient, is anticipated by this 
explanation. 

'If the increment of x = fu and the increment of the variable 
dependent on it = !::.y, then it is self-evident (versteht sich von selbst) 

that ~ represents the ratio of the increments of x and y. This 

implies, however, that fu figores in the denominator, that is the 
increase of the independent variable is in the denominator instead 
of the numerator, not the reverse; while the fmal result of the 
development of the differential form, namely the differential, is also 
given in the very beginning by the assumed differentials.* 

'If I assume the simplest possible (allereinfachste) ratio of the 
dependent variable y to the independent variable x, then y = x . 
Then I know that dy = dx or y = x. Since, however, I seek the 
derivative of the independent [variable] x, which here = x, I 
therefore have to divide both sides by i or dx; so that: 

dy 
dx or i. = 1 x 
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'I therefore know once and for all that in the symbolic differential 
coefficient the increment [of the independent variable] must be 
placed in the denominator and not in the numerator. 

'Beginning, however, with functions of x in the second degree, 
the derivative is found immediately by means of the binomial 
theorem [which provides an expansion] where it appears ready
made (fix und fertig) in the second term combined with dx or x; 
that is with the increment of the first degree + the terms to be 
juggled away. The sleight of hand (Eskamotage) however, is unwit
tingly mathematically correct, because it only juggles away errors 
of calculation arising from the original sleight of hand in the very 
beginning. 

x 1 = x+b.x is to be changed to 

x1 = x + dx or x +X , 

whence this differential binomial may then be treated as are the 
usual binomials, which from the technical standpoint would be 
very convenient. 

'The only question which still could be raised: why the mys
terious suppression of the terms standing in the way? That 
specifically assumes that one knows they stand in the way and do 
not truly belong to the derivative. 

'The answer is very simple: this is found purely by experiment. 
Not only have the true derivatives been known for a long time, 
both of many more complicated functions of x as well as of their 
analytic forms as equations of curves, etc., but they have also been 
discovered by means of the most decisive experiment possible, 
namely by the treatment of the simplest algebraic function of 
second degree, e.g.: 

Y = x2 

y+ dy = (x+ dx) 2 = x 2 + 2xdx+ dx2
, 

y + y = (x + x) 2 = x 2 + 2xx + x2 • 

'If we subtract the original function, x 2(y = x 2) from both sides, 
then: 

dy = 2xdx + dx 2 

y=2xx+xx; 

! 

i 

il 
~ 
'~ 

l 
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I suppress the last terms on both [right] sides; then: 

dy = 2xdx ,y = 2xx , 

and further 

or 

dy=2x, 
dx 

j = 2x. x 
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'Weknow,however, thatthefusttermoutof (x + a) 2 is x 2 ; the 
second 2xa; if I divide this expression by a, as above 2xdx by dx or 
2xx by x, we then obtain 2x as the frrst derivative of x 2 , namely the 
increase in x, which the binomial has added to x2 • Therefore the 
dx 2 or xx had to be suppressed in order to find the derivative; 
completely neglecting the fact that nothing could begin with dx2 or 
xx in themselves. 

'In the experimental method, therefore, one comes - right at 
the second step- necessarily to the insight that dx 2 or xx has to be 
juggled away, not only to obtain the true result but any result at all. 

'Secondly, however, we had in 

2xdx + dx 2 or 2xx + xx 
the true mathematical expression (second and third terms) of the 
binomial (x + dx) 2 or (x + x) 2 • That this mathematically correct 
result rests on the mathematically basically false assumption that 
x 1 - x = ill is from the beginning x 1 - x = dx or :i, was not 
known. 

'In other words, instead of using sleight of hand, one obtained 
the same result by mearis of an algebraic operation of the simplest 
kind and presented it to the mathematical world. 

'Therefore, mathematicians (man ... se/bst) really believed in 
the mysterious character of the newly-discovered means of cal
culation which led to the correct (and, particularly in the geometric 
application, surprising) results by means of a positively false 
mathematical procedure. In this manner they became themselves 
mystified, rated the new discovery all the more highly, enraged all 
the more greatly the crowd of old orthodox mathematicians, and 
elicited the shrieks of hostility which echoed even in the world of 
non-specialists and which were necessary for the blazing of this 
new path.' 
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In an analogous manner Marx critically analysed both the method 
of d' Alembert as well as that of Lagrange and, as already mentioned, 
opposed all three methods with his own. It consists of first forming, 
for y = f(x), the 'preliminary derivative', 

( ) 
f(x])-f(x) 

<jl X1,X = 
Xt- X 

which is assumed to be continuous at x 1- x and whose value at x 1 = 
xis equal tof(x). In the case of the power functiony = x•, the ratio 
(x~- x 8)/(x 1- x) is transformed into the polynomial 
x'["1 + xx'["2 + ... + xn-2x1 + xn-t, which for x1 = gives f'(x) = 

nxn-1. Marx then introduces the symbolic representation of this pro-

cess, by which the'preliminaryderivative' ~ isreducedtof'(x) = ~· 

where the symbolic differential coefficient ~ has an intmediate 

meaning only as a unit (and not as the two partial quantities dy and 
dx). However, notes Marx, since the equality 

dy = J(x)dx (*) 

is mathentatically correct and is not reduced to the tautology 

0=0 

it therefore is an operative formula [emphasis in origiual- Trans.], 
applicable to complicated functions, making it possible to reduce an 
entire differentiation of its constituent functions. In this way, he 
points out, we obtain the dialectical reversal of the method: we now 
proceed not only from the real mathematical process of the formation 
of the derivative to its symbolic expression, but rather on the con

trary, operating on the symbolic formnla (*)and forming the ratio ;Z 
we arrive at the expression of the derivative of the function. Con
sequently Marx, having not only discovered that the differential is the 
major linear portion of the increment but is also an operative symbol, 
proceeded along a path which we today· would call algorithmic, in the 
sense that it consists of a search for an exact instruction for the 
solution, by means of a finite number of steps, of a certain class of 
problems. He was on a path which has been the fundamental path of 
the development of mathematics. Thanks to the dialectical materialist 
method which in his hands was a powerfnl, effective tool of research, 
Marx was able, without being a mathematician, to reveal the property 
of the differential used as an operational symbol, thus anticipating, as 
the Soviet mathematician V .r. Glivenko has shown, the idea of the 
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entinent French mathentatician G. Hadamard, enunciated in 1911 in 
connection with the application of this concept of functional analysis.* 

Despite the philosophical and historical significance of the foun
dation of differential calculus provided by Marx, it did not enter into 
mathentatics, which developed another path unknown to him. The 
sources which he studied (and their number was significantly greater 
than Gumbel reported in his article, which did not mention even those 
textbooks of analysis, such as those of J.-L. Boucharlat and J. Hind, 
which Marx outlined in detail) made no mention of the works of A. 
Cauchy ( Cours d' analyse and Resume des lefons sur /e ca/cul 
infinitesimal) in which in 1821-1823 he developed the theory of limits, 
a theory which, although it contained shortcomings which were later 
(1880) cleared up by K. Weierstrass, nonetheless incorporated a great 
deal of rigour and rendered the foundation proposed by Marx 
superfluous, although it did not diminish its historical and 
philosophical value. Marx did not know and conld not have known of 
the work of the outstanding logician, mathematician and philosopher 
of Prague, B. Bolzano, who in 1816-1817 defined the concepts of 
limit, continuity, the convergence of series, and others - concepts 
which laid the basis of present-day analysis - since these works as 
well as others of 1830-1848 which contained the beginnings of set 
theory and the theory of real numbers remained unknown for a long 
time. Only a hundred years later did they become the property of 
mathematicians. Naturally, Marx did not consider, therefore, the 
problems of continuity, the differentiability offunctions, theaxiomat
isation of analysis, and so on. 

The value of Marx's mathematical manuscripts, however, is by no 
means restricted to his method providing a foundation for differential 
calculus and his critique of preceding methods. The complete sig
nificance of the manuscripts was only revealed when they were all 
deciphered and scientifically systematised. Beginning with 1932 and 
with the publication in 1933 of the three works mentioned from the 
deciphered manuscripts (which Gumbel had not given the attention 
they deserved), the Swedish mathematician Wildhaber first began 
working on behalf of the Marx-Engels Institute. Work on the man
uscripts was resumed in the 1950s, and somewhat later (1960-1962) 
G .F. Rybkin became interested. All this work- deciphering, trans
lation, research, and compilation of sources - was condacted under 
the leadership of S.A. Y anovskaya, who, despite an extraordinary 

* V .1. Glivenko, 'The Concept of the Differential in Marx and Hadamard• (in Russian 
Pod Znamenmi Marksizma, 1934, No.5, pp.79-85. 
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load of teaching and preparing graduate students, despite a painful 
illness, gave the enterprise all of her energy and her enormous know
ledge of the history of mathematics and its philosophical problems, 
transforming it into her life's work. S.A. Yanovskaya's commentaries 
on the manuscripts (both the one cited above and those contained in 
the volume prepared by the Institute of Marxism-Leninism of the 
Central Committee of the CPSU) by themselves constitute an impor
tant scientific work. One of her many students, K.A. Rybnikov, 
performed significant work in the preparation of the manuscripts for 
publication (in particular, the difficult research and collation of sour
ces). The volume was prepared for publication by the historian O.K. 
Senekina, member of the Institute of Marxism-Leninism, and the 
mathematician A.Z. Rybkin, editor of the Nauka press. 

As a result of all this work lasting many years (S.A. Yanovskaya 
laboured on the manuscripts until her death in October 1966), a book 
has appeared which contains Marx's ideas on a series of the most 
important problems in the history of mathematics as a whole and of its 
individual concepts, as well as on their epistemological [original: 
'gnoseological' - Trans. J significance, ideas which, despite the 
head-spinning pace of the development of mathematics in the '80s of 
the last century - among which and in particular including its 
logical-philosophical basis - have not lost their contemporaneity in 
the slightest. For historians of mathematics and for philosophers 
working with the philosophical problems of mathematics, Marx's 
views will serve as a guide - not in the form of a quotation, every 
letter of which is followed as if counting out an emergency ration, but 
rather in the form of a matchless example of creative, concrete appli
cation of dialectical thinking. 

In addition, the mathematical manuscripts of Marx once again 
confirm the truth of the words Engels spoke at the graveside of his 
great friend. Speaking of Marx as the scientist who had discovered the 
law of the development of human history and the law of motion of 
capitalist production, Engels said: 'Two such discoveries would be 
enough for one lifetime. Happy the man to whom it is granted to make 
even one such discovery. But in every single field which Marx inves
tigated - and he investigated very many fields, none of them super
ficially - in every field, even in that of mathematics, he made 
independent discoveries.'* 

* Quoted from Marx-Engels Selected Works, Volume Two, p.l53-154, Foreign Lan
guage Publishing House, Moscow. The speech was re-translated into English from the 
only written version, in the German-laniuageSozialdemokrat, Zurich, March 22 1883. 

HEGEL AND MATHEMATICS 

by Ernst Kol'man and Sonia Yanovskaya 
From Unter dem Banner des Marxismus 

The enormous interest shown in the study of Hegel by science in the 
Soviet Union is best justified in Lenin's philosophical legacy: 

'Modern natural scientists (if they know how to seek, and if we 
learn to help them) will find in the Hegelian dialectics materialis
tically interpreted a series of answers to the philosophical problems 
which are being raised by the revolution in natural science and 
which make the intellectual admirers of bourgeois fashion 
"stumble" into reaction.' 

If materialism wishes to be militant materialism, it niust set itself 
such a task and work systematically at solving it, otherwise 

'eminent natural scientists will as often as hitherto be helpless in 
making their philosophical deductions and generalisations. For 
natural science is progressing so fast and is undergoing such a 
profound revolutionary upheaval in all spheres that it cannot pos
sibly dispense with philosophical deductions.' ('On the Sig
nificance of Militant Materialism') 

Science and mathematics in the Soviet Union are uninterruptedly 
engaged in strengthening and extending their philosophical foun
dations with the ~elp of the study of Hegel's dialectics from the 
materialist point of view, in order to continue their struggle against 
the pressure of bourgeoiss ideas and against the attempted restoration 
of the bourgeois world outlook as successfully and aggressively as it 
has so far. 

What comes under consideration for the purposes of m•.thematics, 
besides various passages from the various works and from the Marx
Engels correspondence, and particularly Anti-Diihring and The 
Dialectics of Nature and Lenin's philosophical works, is also Marx's 

235 
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previously unpublished manuscripts, of which the Marx-Engels Insti
tute in Moscow possesses 865 closely-written quarto sheets in photo
copy. Part of this work, mainly concerning the nature of dif
ferentiation and Taylor's Theorem, has already been deciphered. 

How does the materialist dialectic assess the role of the Hegelian 
philosophy of mathematics? Marxism-Leninism proceeds from the 
principle that: 

'The mystification that the dialectic suffers in Hegel's hands in 
no way prevents him from being the first to present its general form 
of working in an all-embracing and conscious way. With him it 
stands on its head. One must turn it right side up again in order to 
discover the rational kernel within the mystical shell.' (Marx, 
Afterword to the Second Edition of Capital, 1873.) 

He therefore, of course, also considered Hegel's philosophy of 
mathematics from the point of view of a criticism that distinguishes, 
which knew how to separate the postive kernel of the material and its 
faithfUl translation and transformation from the negative shell of the 
mystically-distorted ideal. Thus we see the positive and the negative 
woven together in Hegel's philosophy of mathematics and we pose 
ourselves the task of freeing the materialist kernel from the idealist 
shell. 

The attitude of the founders of Marxism to Hegel's mathematical 
views can be seen from the following quotation from Engels: 

'I cannot pass over without a comment on old Hegel, who they 
say had no profound mathematical scientific education. Hegel 
knew so much about mathematics that none of his pupils were in a 
position to publish the numerous mathematical manuscripts 
among his papers. The only man to my knowledge to understand 
enough about mathematics and philosophy to be able to do that is 
Marx.' (Engels, Letter to A. Lange, March 29, 1865) 

We dialectical materialists see the merit of Hegelian philosophy in 
the field of mathematics in the fact that Hegel: 
I. was the first to brilliantly guess the objective genesis of quantity as 
a result of the dialectic of qnality; 
2. correctly determined the subject matter of mathematics and cor
respondingly also its role in the system ·of sciences and gave· an 
essentially materialistic definition of mathematics which smashes 
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apart the framework of the bourgeois world-outlook with its charac
teristic quantity fetishism (Kant and" pan-mathematicism); 
3. recognised that the field of differential and integral calculus is no 
longer a merely quantitative field, but that it already contains qual
itative moments and traits which are characteristic of the concrete 
concept (unity of internally contradictory moments); and that con
sequently 
4. any attempt to reduce infinitesimal calculus to elementary 
mathematics, to annihilate the qualitative leap between the two, must 
from the outset be regarded as ill-fated; 
5. mathematics, from its own resources, without the assistance of 
theoretical philosophical thought, is not in a position to justify the 
methods which it itself already uses; 
6. the origin of differential calculus was determined, not by the 
requirements of the self-development of mathematics, but its source 
and foundation are to be found in the requirements of practice 
(materialist kernel!); 
7. the method of differential calculus represents an analogue of cer
tain natural processes and therefore cannot be grasped out of itself but 
only out of the essence of that field where this method finds its 
application. 

The weaknesses, mistakes and errors of Hegel's view of 
mathematics, which follow with iron necessity from his idealistic 
system, rest, from the dialectical materialist point of view, on the fact 
that: 
1. Hegel believes that the method of differential calculus as a 
whole is a method alien to mathematics, so that within mathematics 
no transition can be created between elementary and higher 
mathematics; consequently however the concepts and methods of the 
latter can only be brought into mathematics in an external and arbit
rary manner, through external reflection, and do not arise through 
dialectical development as a unity of the identity and difference of the 
new and the old; 
2. he thinks that such a transition is only conceivable outside of 
mathematics in his philosophical system, whereas by and large he is 
forced to carry the true dialectics of the development of mathematics 
over to his philosophical system; 
3. he often does this however in a distortiog and mystifying way, and 
in doing so replaces the then still unknown real relations with ideal, 
fantastical relations and thus creates an apparent solution where he 
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should have sharply posed an unsolved problem, and subjects himself 
to the task of proving and defending that in the mathematics of his 
day, which was often simply wrong; 
4. he considered the factual develoment of mathematics to be a 
reflection of the development of the logical categories, of these 
moments of the self-development of the idea, and denied the pos
sibility of constructing a mathematics which would consciously apply 
the dialectical method and would therefore be able to discover the true 
dialectic of the development of its own concepts and methods and not 
simply take the qualitative and contradictory moments into itself 
through external reflection; 
5. correspondingly he is not only not in a position to pose the task of 
reconstructing. mathematics through the method of dialectiallogic, 
but he is forced to jog along behind the mathematics of his day despite 
his correct criticism of its basic concepts and methods; 
6. he prefers Lagrange's proof of infinitesimal calculus not because it 
uncovers the real relationships between the mathematics of the finite 
(algebra) and of the infinite (analysis) but because Lagrange brings 
the differential quotient into mathematics in a purely external and 
arbitrary way, whereby Hegel conforms to the usual shallow interpre- ·· 
tation of Lagrange; 
7. he denies the possibility of a dialectical mathematics and in his 
efforts to diminish the significance of mathematics excessively, more 
than it deserves, he totally denies the qualitative (dialectical) moments 
in elementary mathematics (arithmetic). However, as their presence 
was obvious to a dialectician like Hegel, while he drove them out at 
one point (in the chapter on 'Quantity') he had to create them at 
another ('Measure'). 

Hegel's merit in correctly recognising the subject matter of 
mathematics deserves to stand high in our estimation, particularly in 
view of the fact that even today this question causes the greatest 
difficulties in the most varied idealistic and eclectic philosophical 
trends because they reflect material reality in a distorted way. 

Thus the intuitionists (Weyl, Brouwer), following Kant, take the 
view that pure a priori intuition forms the subject matter of 
mathematics, while the logicists, who since Leibnitz take mathematics 
to be part of!ogic, see in axioms and theorems the laws of reason. The 
formalists, like Hilbert, deny the existence of a particular subject 
matter of mathematics at all, holding the latter to be a mere collection 
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of rules that pertnit us to form various combinations and trans
formations. The mechanistic empiricists, who classify mathematics as 
part of physics and deny its specific nature, think that its subject 
matter is physical space and physical time. Others, like Mach, seek its 
subject matter in psychology, etc. 

However, all these definitions lead to difficulties that none of these 
philosophical systems is able to overcome. As we know, the neo
Kantians (Bieberbach, Nelson) had to face not a few difficulties in 
order to reconcile pure a priori contemplation with non-Euclidian 
geometry. The logicists (Russell, Frege) were forced to take the view 
that mathematics was granunar without subject, object, verb and 
predicate, a grammar of the copula 'and', 'or', 'if, etc., in order to 
turn it thus into a gigantic tautology incapable of providing any new 
knowledge of the subject matter. The mechanistic empiricists were 
unable to classify multi-dimensional geometry in their system and 
were faced with the choice of recognising a mathematically possible 
geometry but excluding the rest from mathematics. The formalists, 
who have transformed mathematics into a sort of chess game with 
empty symbols, are not in a position to explain its role in technology, 
science and statistics. The conventionalists (Henri Poil:lcare), who 
hold that mathematical concepts and operations are merely con
venient, mentally econotnical conventions, thus avoid the question 
posed and are unable to make any statement about the development of 
these concepts. 

Thus none of these philosophical schools, which all grasp one and 
only one side of reality, is in a position to understand the link between 
mathematics and practice and its laws of development. Hegel alone 
gave mathematics a definition such as grasped the essence of the 
matter, a deftnition which, quite independently of Hegel's views, is 
actually profoundly materialist. 

According to Hegel mathematics is the science of quantity, i.e. of a 
detertnination of objects which does not describe them as such, in 
what makes them specifically different from other objects and from 
themselves at another stage in their development, but only from the 
side that is external and indifferent towards change . 

'Pure mathematics deals with the space forms and quantity 
relations of the real world- that is with material which is very real 
indeed. The fact that this material appears in an extremely abstract 
form can only superficially conceal its origin from the external 
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world. But in order to make it possible to investigate these forms 
and relations in their pure state, it is necessary to separate them 
entirely from their content, to put the content aside as irrelevant.' 
(Engels, Anli-Diihring, 1878, pp.Sl-52) 

This connection between mathematics and material reality repro
duces the materialist interpretation of Hegel's definition of the subject 
matter of mathematics. The spatial relationships of our physical space 
correspond to the requirements of this definition, and spatial forms 
really are, according to Hegel, the subject matter of mathematics, 
even though they do not exhaust it, since any relationship that offers 
the possibility of various quantitative 'interpretations' can become the 
subject matter of mathematics. Thus for example the vortices dealt 
with by vector analysis can belong just as much to a fluid as to 
electrodynantics, which does not mean, however, that these 
mathematical vortices are a product of the idea, but that in themselves 
they reflect quantitative relations of real i.e. material reality. 

Thus Hegel's definition grasps the actual essence of mathematics, 
provides the possibility of grasping its link with material reality and 
simultaneously shows the limits of mathematics, its place and role in 
the system of sciences which, as a whole and in their development, 
reflect objective (material) reality. From the standpoint of this defin
ition the definitions quoted above can be not merely rejected a limine 
(from the threshold) but actually overcome. In each one of 
them moments of truth can be recognised, 'one of the features, sides, 
facets of knowledge' which, one-sidedly exaggerated and distended, 
develops 'into an absolute, divorced from matter, nature, 
apotheosised'. (Lenin, 'On the Question of Dialectics', Volume 38, 
Collected Works, p.363). 

This can be done even though Hegel himself was not able fully to 
overcome the one-sidedness of these definitions. For in Hegel there are 
to be heard motifs which, often pretty eclectically jumbled, simply 
echo not only Leibnitz's logistics but also Kant's construction from 
the elements of a priori contemplation, indeed even the con
ventionalist and formalist denial of the objective correcmess of 
mathematical statements. Thus he does in fact correctly describe the 
abstract, formal essence of the mathematical method, according to 
which 'first definitions and axioms are set up, to which theorems are 
attached, whose proof consists merely in being reduced by the under
standing to those unproven postulates'. (Hegel, System of Philosophy.) 
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But he himself one-sidedly exaggerates the moment of tautology in 
mathematics, closing his eyes to the evolution of this method which 
leads to the arbitrary and external character of the axioms being 
sublated - even though to this day the majority of mathematicians 
and philosophers of mathematics do not recognise this - and that in 
the development of mathematics the formal-logical moments of 
understanding are shouldered aside by the dialectical moments. 

It is true that Hegel correctly notes the existence of the sensuous 
moments in mathematics, but he relies too much on Kant by reducing 
the whole content of mathematics like him to abstract sensuous 
inmition. For he agrees with Kant that mathematics 'does not have to 
do with concepts, but with abstract determinations of sensuous 
intuitions', wherein particularly 'geometry has to do with the sen
suous, or abstract intuition of space', which is true to the extent that 
the sensuous moment is particularly pronounced precisely in 
geometry, but which must not be made absolute even in relation to 
geometry. Moreover Hegel himself goes on to concede that even this 
science, which only deals with these abstract sensuous perceptions, 
'nevertheless collides in its path, most remarkably, in the end with 
incommensurabilities and irrationalities where, if it wishes to proceed 
further in determining, it is driven beyond the principle of under
standing'. (Ibid.) Finally Hegel criticises, and rightly, the 'sleight of 
hand and charlatanty even of Newtonian proofs' which tried to 
present the laws of experience as the results of calculation. He is 
completely correct when he claims that by no means every single 
member of a mathematical formula, taken by itself, has to have a 
concrete significance and that the mathematical correcmess of the 
result is no guarantee of the real sense (i.e. to which an existence 
would correspond) of the result of the calculation. But at the same 
time what this amounts to in Hegel is that in mathematical prop
ositions in general he denies correcmess as such in them themselves, 
that he considers mathematics, as do today's formalists, only from the 
aspect ofits inner logical consistency, and not of its objective truth, 
i.e. only as a calculation, but not as a science which has its own subject 
of research. 

Being the science of the abstract detemtination of quantity, 
mathematics can only portray one side of reality. Between it and 
physics there is already an essential difference, a node, a transition to 
the new quality. For physics already researches matter from the 
qualitative, essential side. Its molecules, atoms and electrons are no 
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longer indifferent relationships in which mutually differing things can 
emerge without changing their quality, but precisely molecules, 
atoms and electrons in the wholeness of their particularity, the 
specific way they arise and develop. Therefore physics cannot be 
reduced to mathematics; the role of mathematics in science is limited. 
This standpoint is diametrically opposed to that of Kant, according to 
which science is only worthy of the name to the extent that 
mathematics finds a place in it. 

By coming out against the fetishisation of quantity, which after all is 
only a reflection of the abstract money-trading relations of the 
bourgeois order, Hegel in this case actually burst apart the framework 
of bourgeois philosophy. However, since he did not base himself on 
another class, but was and remained a philosopher of the bourgeoisie, 
he could only develop this, in its essence profoundly materialist 
standpoint, in an idealist way, and thus to unbridled hypertrophy. 
What was materialist in this standpoint of Hegel's is made particularly 
clear by the fact that it is precisely the notorious 'mathematicisation' 
of physics which has rendered the greatest service to idealism in 
pliilosophy and science. Not in vain did the natural philosopher Abel 
Rey, who despised materialism, write that 'the crisis in physics lies in 
the conquest of the realm of physics by the mathematical spirit' (Abel 
Rey, La Tlu!orie physique chez les physiciens, Paris 1907, quoted in 
Lenin, Volume 14, p.309), a crisis in which 'matter disappears', only 
equations remain (ibid). 

All the same, what had happened in science- the drawing together 
of the two sciences of physics and mathematics - was evaluated by 
Lenin as a significant success for science. This is in complete harmony 
with Hegel if we interpret him materialistically. Hegel it is true did 
not recognise the development of concepts in mathematics, since he 
did not count mathematics as part of philosophy, i.e. as a science 
dealing with 'concepts'. 

'One could also conceive the idea of a philosophical mathematics 
knowing by Notions, what ordinary mathematics deduces from 
hypotheses according to the method of the Understanding. How
ever, as mathematics is the science of finite determinations of 
magnitude which are supposed to remain fixed and valid in their 
finitude and not to pass beyond it, mathematics is essentially a 
science of the Understandlng; and since it is able to be this in a 
perfect manner, it is better that it should maintain this superiority 

_l_ 
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over other sciences of the kind, and not allow itself to become 
adulterated either by mixing itself with the Notion, which is of a 
qnite different nature, or by empirical applications.' (Hegel, 
Philosophy of Nature, Miller trans., p.38) 

But that does not mean that he completely overlooked this 
development. No, he merely transferred it from mathematics into his 
system of philosophy and here he demanded complete unity of 
development. 

Between geometry and mechanics there must be a unity, everything 
must be linked by a chain of dialectical deduction, by the chain of 
development. Even the fact that our space has precisely three dimen
sions must find its explanation in the unity of development, but this 
cannot be achieved with the means of mathematics alone, but, as 
Hegel said, with the means of philosophy, as dialectical materialism 
maintains with the means of physics. Between physics and 
mathematics there is a unity of development and not of reduction, a 
unity of identity and difference. For not only the one science but the 
other too represents, as we maintain, real i.e. material reality at 
different levels of its complexity and development. The geometry of 
physical space and mechanics are two such fields' one standing 
directly above the other; between the principle of gravitation and the 
doctrine of the properties of material time-space there must therefore 
be a link, but at the same time a difference too. To discover this link 
we must develop geometry further, 'physicise' it, if one may use the 
expression. 

Einstein could not have developed his theory of relativity had not 
geometry progressed in the appropriate direction in which it filled 
itself with physical content. Riemann's differential geometry 'sub
lates' - using this term in Hegel's sense - Euclidian geometry by 
allowing the latter validity only as a moment, by subordinating and 
incorporating the geometry of 'rigid' unchanging space to and into the 
constant curvature of the geometry of a changeable 'flnid' space, 
which only remains Euclidian in its inf"mitely small parts, of a space 
where 'either the reality on which the space is based forms a discrete 
multiplicity or the. basis of the measure relations must be sought 
outside in forces operating on them to form them', (ibid, p.284)' 
where therefore bodies are no longer 'indifferent' in their mutual 
'distance' since the length of the path travelled depends on 'history'. It 
is not physics that is sublated and subsumed into mathematics, but 
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mathematics that is developing and coming closer to physics by taking 
into itself more and more qualitative moments of measure. This 
development is therefore proceeding completely in the sense of the 
materialistically interpreted dialectical method of Hegel, even though 
it just as completely contradicts his system, which could not tolerate 
dialectics in 'concepdess' mathematics. 

Thus the successes of the physical theory of relativity are no more to 
be linked to Hegel's idealist system than they are to be with the 
relativist philosophy, they came into being thanks to the spontaneous 
dialectics of the scientific researcher, which involuntarily reflects the 
true dialectic of nature. But the failures which Einstein's physical 
theory of relativity is suffering at the moment in its effons to create an 
image of the world that adequately reflects reality and at the same time 
does justice to quantum relations, are based on an inability to grasp 
this reality as a unity of continuity and the discrete, on the obstinate 
desire to present it as the absolute continuum of ideal thought. 

By removing dialectics from nature, from science, and transferring 
it to his philosophical system placed above nature, Hegel acts as a true 
idealist. For that very reason not only did he deny mathematics the 
ability to proceed in a consciously dialectical way but he also, despite 
his pronounced objectivism, falls into a purely subjective position in 
mathematics. 

'To treat an equation of the powers of its variables as a relation of 
the functions developed by potentiation can, in the first place, be 
said to be just a matter of choice or a possibility; . . . utility of such a 
transformation has to be indicated by some further purpose or use; 
and the sole reason for the transformation was its utility' (Hegel, 
Science of Logic, Miller trans., p.281) 

-he wrote, in a style that we fmd again in Mach or Poincare. For 
the mathematically infinite, which emerges in mathematics in the 
form of the series, the transition of limit, fluxion, differential 
quotients, the infmitesimal, etc., is no longer something merely quan
titative from his standpoint, but already contains a qualitative 
moment, so that here mathematics cannot avoid the concept, whereas 
the concept is supposed to be something alien to mathematics, some
thing which is supposed to contradict all its Jaws, and thus 
mathematics can only take it in an 'arbitrarily lemmatic way' from a 
field alien to mathematics. Hegel correctly states that elementary 
mathematics would never have given birth to analysis out of itself, 
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that it was driven to do so by the requirements of 'application', i.e. of 
practice, technique, science. 

When Hegel writes: 'The appearance of arbitrariness presented by 
the differential calculus in its applications would be clarified simply 
by an awareness of the nature of the spheres in which its application is 
permissible and of the peculiar need for and condition of this appli
cation', (ibid., p.284) this materialist kernel is in completely the same 
sense as Engels's following claim concerning the material analogies of 
mathematical infmity: 

'As soon, however, as the mathematicians withdraw into their 
impregnable fortress of abstraction, so-called pure mathematics, 
all these analogies are forgotten, infinity becomes something 
totally mysterious, and the manner in which operations are carried 
out with it in analysis appears as something absolutely incom
prehensible, contradicting all experience and all reason.' (Engels, 
Dialectics of Nature, p.271) 

But as a result ofHegel'sidealist blinkers he does not notice, and in 
his time it was difficult to notice, how by this influence all the 
operations and concepts of mathematics came into motion and the 
whole mathematical edifice is renewed from the ground up. He 
correctly notes the failure of the attempts to assimilate the new 
concepts by the means of old ideas, but as a bourgeois philosopher 
who only intends to explain the world and not to change it, he does not 
at all pose himself the task of transforming mathematics dialectically. 

'Until the end of the last century, indeed until 1830, natural 
scientists could manage pretty well with the old metaphysics, 
because real science did not go beyond mechanics - terrestrial and 
cosmic. Nevenheless confusion had already been introduced by 
higher mathematics, which regards the eternal truth of lower 
mathematics as a superceded point, of view.' (Ibid,. p.203 [the 
words in italics were omitted in the original article -Ed.]) 

So Engels claims, thus far agreeing with Hegel. But from here on the 
difference starts, because Engels goes on: 

'Here the fixed categories dissolved, mathematics had arrived on a 
terrain where even such simple relations as that of mere abstract 

. quantity, bad infinity, assumed a completely dialectical shape and 
forced mathematics, against its will and without knowing it, to 
become dialectical.' (Ibid.) 



246 MATHEMATICAL MANUSCRIPTS 

According to Hegel these dialectical moments, which are alien to 
the elementary mathematics of constant magnitudes, cannot be adop
ted by mathematics at all. All the attempts by mathematics to assimi
late them are in vain, for since mathematics is not a science of 
'concept', therefore naturally no dialectical development, no move
ment of its concepts and operations on its own ground is possible, and 
the only possibility that remains open to it is to 'agree upon a con
vention' arbitrarily, according to Lagrange to designate 'derivatives of 
a given primary function' as the coefficients of a particular member of 
the development of Taylor's series of that function. At best what can 
be shown in this is the convenience and suitability of precisely that 
and no other 'convention'. 

The great dialectician correctly criticises all the attempts under
taken in his day to prove analysis, but in doing so he does not draw the 
expected conclusion that these attempts failed because they did not 
develop analysis dialectically but tried to reduce it to elementary 
mathematics. He concludes rather that this is impossible in the field of 
mathematics, and that it is only possible in the interior of philosophy 
and in his system of categories developing out of one another. While 
driving dialectical development out of mathematics in t4is way and 
transferring it to his system of pure categories of logic, he often 
subjects it to qnite abstrUse, sophistic and fantastic mystification. As 
an example of this one only needs to read how intensive quantity, after 
uniting with its opposite, extensive quantity, goes over to an infinite 
process, and more of the like. Hegel's artificial, mystical and mys
tifying transitions confirm in this field too that idealist dialectics, 
which aims to develop concepts out of themselves and does not reflect 
real relations and transitions, the movement and development of 
material reality, becomes fruitless because of its idealist moment; that 
there can be no scientific dialectic other than the materialist dialectic. 

However, by annihilating the inner dialectic of concept in 
mathematics Hegel · deprives himself of the opportunity of 
revolutionising mathematics, at least in the interior of his 
philosophical system, and is forced merely to transfer passively and to 
'prove', instead of actively working and transforming, and at the best 
to propose a change of name, like for example 'development function' 
instead of 'derivative'. When Hegel claims that in the interior of his 
system oflogical categories he has not only proved the possibility but 
has also given the trUe substantiation of that same mathematical 
infinite in all its varieties on which all previous attempts to sub
stantiate analysis had. come to grief, in fact he himself is labouring 
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tinder the same mental images against which he polemicises so shar
ply. Thus for example he is right when he condemns as unscientific 
and anti-mathematical the method of neglecting infinitesimals of a 
higher order on the basis of their quantitative insignificance and when 
he declares the same method to be permissible on the basis of the 
qualitative meaning of these magnitudes. Since the differential is a 
quantitative-qualitative relation, in the development 

n(n- I) 
(x + dx)n- xn = nxn-1dx + xn-2dx2 + 

1.2 
the form of sums appears as something external and unessential, from 
which therefore abstraction must be made. 'Since what is involved is 
not a sum, but a relation, the differential is completely given by the first 
term,' he writes (op.cit, p.265), and thus rescues himself with the same 
dodges and bolt-holes of which he completely accuses the creators of 
infinitesimal calculus, whom in fact he follows, at great pains to let in 
at the window what he has just thrown out at the door. 

Precisely because Hegel, startiiig from his idealistic standpoint, did 
not pose the task and could not pose it of reconstructing mathematics 
by means of dialectical logic, but only tried to 'substantiate' it in the 
interior ofhis philosophical sytem as it stands, he never achieved even 
this task, despite a whole number of the most valuable comments, and 
had as good as no direct influence at all on the further development of 
mathematics although the latter, as we have already shown, was 
spontaneously proceeding precisely along a dialectical path. 

What is much more responsible for the fact that Hegel's dialectic 
exerted no influence on the development of science and mathematics 
is the bourgeois narrowness that treated him like 'a dead dog'. This 
led to the situation where all that has remained alive from Hegel's 
works is what Marx and Engels as the ideologists of the proletariat 
have stood from its head on to its feet from his teachings and have 
placed at the service of the proletarian revolution. 

By overcoming the idealist dialectic in a materialist way, Marx, 
Engels and Lenin were enabled, in contrast to Hegel, to bequeath us 
truly scientific theoretical statements, i.e. appropriate to material 
reality, to practice, in the field of mathematics too, which serve us as 
guidelines for research, scientific prediction and creation. The nodal 
points here are formed by the Marxist-Leninist conception of the 
sources and powers of development of mathematics, of its essence, the 
interconnection and significance of its parts, of what is dialectical in 
mathematics itself and of the role that mathematics has to play in 
relation to other sciences. 

j., 
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'But it is not at all true that in pure mathematics the mind deals 
only with its own creations and imaginations. The concepts of 
number and figure have not been derived from any source other 
than the world of reality. The ten fingers on which men learnt to 
count, that is, to perform the fust arithmetical operation, are 
anything but a free creation of the. mind. Counting requires not 
only objects that can be counted, but also the ability to exclude all 
properties of the objects considered except their number - and 
this ability is the product of a long historical evolution based on 
experience. Like the idea of number, so the idea of figure is 
borrowed exclusively from the external world, and does not arise in 
the mind out of pure thought. There must have been things which 
had shape and whose shapes were compared before anyone could 
arrive at the idea of figure . . . Like all other sciences, mathematics 
arose out of the needs of men: from the measurement of land and 
the content of vessels, from the computation of time and from 
mechanics. But, as in every department of thought, at a certain 
stage of development the laws, which were abstracted from the real 
world, became divorced from the real world, and are set up against 
it as something independent, as laws coming from outside, to 
which the world has. to conform. That is how things happened in 
society and in the state, and in this way, and not otherwise, pure 
mathematics was subsequently applied to the world, although it 
borrowed from this same world and represents only one part of its 
forms of interconnection -and it is only just because of this that it 
can be applied at all.' (Engels, Anti-Diihring, pp.Sl-52) 

And further on: 

'The mystery which even· today surrounds the magnitudes 
employed in the infinitesimal calculus, the differentials and 
infinities of various degree, is the best proof that it is still imagined 
that what we are dealing with here are pure "free creations and 
imaginations" of the human mind, to which there is nothing 
corresponding in the objective world. Yet the contrary is the case. 
Nature offers prototypes for all these imaginary magnitudes.' 
(Engels, Anti-Diihring, p.436) 

This conception naturally has nothing in common with that of 
empiricists such as J .S. Mill, since unlike theirs it does not limit 
cognition to induction, but in contrast to the 'pan-inductionists' that 
Engels laughs at considers the logical as the historical worked over. 

Thus mathematical concepts and conformities to law are con-

// 
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. sidered not as absolute, unchangeable, eternal truths, but as parts of 
the ideological superstructure of human society tied to the latter's 
fate. It thus goes without saying that the main law of social develop
ment, the law of class struggle, cannot remain without influence on 
mathematics. 

'There is a well-known saying that if geometrical axioms affected 
human interests attempts would certainly be made to refute them. 
Theories of the natural sciences which conflict with the old pre
judices of theology provoked, and still provoke, the most rabid 
opposition.' 

This standpoint, which thus has nothing in common with the claim 
by Kautsky and Cunow that mathematics and the natural sciences 
must be counted completely among the forces of production, which is 
the same as denying the class struggle within them, rejects the division 
of sciences into exact ~mathematics and the natural sciences - and 
not exact- the social sciences. 

The class standpoint in mathematics must not, however, be inter
preted in such a way that all previous mathematics is rejected as a 
whole and that in its place a mathematics constructed out of com
pletely new elements must be set up according to totally new prin
ciples. We take the position that the development of mathematics is 
determined by the developing productive forces (whereby 
mathematics itself has a reciprocal effect on the productive forces) and 
consequently reflects material reality. However, the productive forces 
exert their effect on mathematics by means of the connecting link of 
the production relations, which in class society are class relations and 
stamp the distorting class impress on mathematics. Thus 
mathematics displays a dual nature. 

------
'Philosophical idealism is only nonsense from the standpoint of 

crude, simple, metaphysical materialism. From the standpoint of 
dialectical materialism, on the other hand, philosophical idealism 
is a one-sided, exaggerated, iiberschwengliches (Dietzgen) 
development (inflation, distention) of one of the features, aspects, 
facets of knowledge into an absolute, divorced from matter, from 
nature, apotheosised ... Human knowledge is not (or does not 
follow) a straight line, but a curve which endlessly approximates a 
series of circles, a spiral. Any fragment, segment, section of this 

i.· 
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curve can be transformed (transformed one-sidedly) into an inde
pendent, complete, straight line, which then (if one does not see 
the wood for the trees) leads into the quagmire, into clerical 
obscurantism (where it is anchored by the class interests of the 
ruling classes). Rectilinearity and one-sidedness, woodenness and 
petrification, subjectivism and subjective blindness - voila the 
epistemological roots of idealism. And clerical obscurantism 
(philosophical idealism), of course has epistemological roots, it is 
not groundless; it is a sterile flower undoubtedly, but a sterile 
flower that grows on the living tree of living, fertile, genuine, 
powerful, omnipotent, objective, absolute human knowledge.' 
(Leuin, 'On the Question of Dialectics', Collected Works, Vo1.38, 
p.363) 

All the less can bourgeois mathematics be simply rejected, but on 
the contrary it must be subjected to a reconstruction, since it rep
resents the material world, albeit one-sidedly and distortedly, never
theless objectively. 

But if mathematics owes its origins to practice, if it reflects real 
relations and conditions derived from material reality (albeit in a 
completely abstract and distorted form), therefore it must be dialec
tical. For 'dialectics, so-called objective dialectics, prevails through
out nature' (Engels, Dialectics of Nature, p.211), and 'the dialectics in 
our head is ouly a reflection of real development which takes place in 
the realm of nature and of human society and which follows the 
dialectical forms' (Letter to Konrad Schmidt, November I, 1891). 
'This mystical in Hegel himself, because the categories appear as 
pre-existing and the dialectics of the real world as their mere reflec
tion' (Dialectics of Nature, p.203). And actually as we have already 
said, Engels held that higher mathematics was dialectical since the 
introduction of variables by Descartes brought into them at the same 
time movement and therefore also dialectics. Hegel correctly noted 
that new qualitative and dialectically internally contradictory 
moments thus penetrated into mathematics. But he overlooked what 
Engels emphasised, that is to say that mathematics itself was thus 
forced, although unconsciously and against its will, to become dialec
tical and that therefore the dialectic of the development of its basic 
concepts and methods must be sought within mathematics itself. 
· Nevertheless, elementary mathematics, just like formal logic, is not 

nonsense, it must reflect something in reality and therefore it must 
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contain certain elements of dialectics. Engels too can actually see it, in 
contrast to Hegel. 

'Number is the purest quantitative determination that we know. 
But it is chock full of qualitative differences ... 16 is not merely 
the sum of 16 ones, it is also the square offour, the fourth power of 
two ... Hence what Hegel says (Quanti!Y, p.237) on the absence of 
thought in arithmetic is incorrect.' (Ibid., pp258-259) 

Even in elementary algebra and arithmetic he sees a 'transformation 
of one form into the opposite' which is 'no idle trifling' but 'one of the 
most powerful levers of mathematical science without which today 
hardly any of the more difficult calculations are carried out' (ibid., 
p.258) 

Marx however saw, not ouly in agreement with Hegel, both the 
iropossibility of all attempts to provide a formal-logical substantiation 
of analysis, and also the childishness of trying to make it rest on 
sensuous intuition, on the graphic, etc. He not ouly fought for the 
dialectic of mathematics, particularly of analysis, but more than that 
he undertook an independent attempt to build up a dialectical foun
dation based on the uuity of the historical and the logical. In .doing so 
Marx poses himself the task, as we have already mentioned in passing, 
of not reducing analysis to arithmetic, as the logicists, starting with 
Weierstrass, later tried to do, which, despite all their achievements in 
deepening the way in which mathematical problems are posed, led to 
the well-known paradoxes of set theory which destroyed the whole 
structure, not ouly mathematical but also logical, which had been 
specially erected for that purpose. Marx tries to show how the essen
tially new differential and integral calculus grows out of elementary 
mathematics itself and out of its own ground, appearing as 'a specific 
type of calculation which already operates independently on its own 
ground', so that 'the algebraic method therefore inverts itself into its 
exact opposite, tlie differential method', and in this way as a leap that 
'flies in the face of all the laws of algebra'. 'This leap from ordinary 
algebra, and besides by means of ordinary algebra , into the algebra of 
variables ... is prima facie in contradiction to all the laws of con
ventional algebra.' (See pp.Z0-21, p.ll7,_this volume- Ed) 

Just like Hegel, Marx is closest to Lagrange in his proof of analysis. 
But his conception of Lagrange is fundamentally different from 
Hegel's conception. Hegel conceives Lagrange, as we have already 
seen, according to the usual shallow interpretation, so that Lagrange 
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appears as a typical formalist and conventiomilist introducing the 
fundamental concepts of analysis into mathematics in a purely exter
nal and arbitrary manner. What Marx admires about him, on the 
contrary, is the exact opposite; the fact that Lagrange uncovers the 
connection between analysis and algebra and that he shows how 
analysis grows out of algebra. 'The real and therefore the simplest 
connections between the new and the old', Marx writes 'are always 
discovered as soon as the new takes on a rounded-out form, and one 
can say that differential calculus obtained this relation through the 
theorems of Taylor and MacLaurin. It thus fell to Lagrange to be the 
first to reduce differential calculus to a strictly algebraic basis.' But at 
the same time Lagrange is criticised by Marx for overlooking the 
dialectical character of this development and staying too long on the 
ground of algebra and disparaging the conformity to law and method 
of analysis itself. For that reason 'he can ouly be used as a starting 
point in that respect'. Thus Marx, the true dialectician, fights on two 
fronts here too: against not ouly the purely analytical reduction of the 
new to the old, which was so characteristic of the mechanical 
methodology of the 18th century, but also against the purely synthetic 
introduction of the new from outside, which is so typical of present
day intuitionists also, which presents the principle of complete 
mathematical induction as that which is new, coming from outside, 
from intnition and thus obliterates the transition between logic and 
mathematics. Here too Marx fights for dialectical unity, for the unity 
of analysis and synthesis. 

From the dialectical materialist conception of mathematics as a 
depiction, although extremely abstract, of the laws of motion of 
material reality, it follows that dialectical materialism has a much 
higher estimation of the role of mathematics than Hegel did. Engels 
particularly emphasises that 'a knowledge of mathematics and natural 
science is necessary for a conception of nature which is dialectical and 
at the same time materialist', (Anti-DU"hriizg, p.l6) although he does 
not overlook the difficulties of applying it to the various branches of 
knowledge and particularly emphasises that 'the differential calculus 
for the fust time makes it possible for natural science to represent 
mathematically processes and not ouly states'. (Dialectics of Nature, 
p.272) 

The increasing difficulties offered to the mathematics of com
plicated forms of motion, piling up in an ascending series in leaps 
from mechanics to physics, from physics to chemistry, from there to 
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biology and onwards to the social sciences, do not, in the dialectical 
materialist conception, entirely block its path, but allow it the pros
pect of even 'determining mathematically the main laws of capitalist 
economic crisis' (Marx; Letter to Engels, May 31, 1873). 

Dialectical materialism considers the dialectic of concepts as ouly 
the conscious reflection of the dialectical movement of the real world, 
and holds this interconnection to be valid, the determination of the 
ideal by the material, of theory by practice as the leader in the final 
analysis. It therefore follows that the standpoint of dialectical 
materialism on the further development of science in general and also 
of mathematics is the direct opposite of the standpoint of Hegel. 
Whereas Hegel merely tries to substantiate what already exists, it is a 
matter here of a transformation, the conscious change, the recon
struction of science on the basis of the gniding role of practice. This 
attitude, which sharply distinguishes Marxism-Leninism from 
Hegel's philosophy and all other idealist and eclectic world-outlooks, 
enables it to see new paths of development in the territory of the 
individual sciences and to protect science from stagnation and decay. 

Present-day science, the natural science and mathematics of the 
capitalist countries, is, just like the whole capitalist economic and 
socio-political system, shaken by a crisis unparalleled in ·both its 
extent and its profundity. The crisis of science, which itself serves as 
the best testimony against the widespread but completely unfounded 
belief that the natural sciences, like philosophy, are supposedly inde
pendent of politics, shakes above all at the methodological roots. The 
panic and the lack of perspective gripping the minds of the ruling class 
in the social field is reflected in science, in the flight of the majority 
back to mysticism, while 'a portion of the bourgeois ideologists who 
have raised themselves up to the level of comprehending theoretically 
the historical movement as a whole . . . goes. over to the proletariat' 
(Marx and Engels, Communist Manifesto), strives to grasp its world 
outlook and methodology, dialectical materialism, and to impose it in 
science, and naturally feels itself drawn to the science of the victorious 
proletarian revolution. The present-day crisis of science is, however, 
destroying not ouly the philosophical justification of science, but the 
skeleton of science itself. Not ouly does it deprive it of material means 
and labour power, but it drives its thematics into the blind alley of 
perspectivelessness, bringing ever closer the peril that the apparatus 
of scientific theory itself will be blunted and will prove unable to solve 
the problems of practice. 

Thus Bertroux (P. Bertroux, L'Ideal Scientifique des 

i! 
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Mathbnaticiens, 1920) for example shows the ways in which the 
mathematician chooses his themes nowadays, and comes to the dis
consolate conclusion that the overwhelming majority of the new 
mathematical works consists in small improvements and 
enlargements to and analogies of older works, that the method of 
mathematical research that even Leibnitz complained of, which leads 
to a flood of essays and to 'disgust with science', has gained and is 
gaining gtound, but that no other paths can be recommended to 
mathematicians, but that they should continue to rely on 'the general 
tendencies of science in their age'. The origin lies in the separation in 
principle of theory from practice peculiar to idealist philosophy, in the 
stigma of planlessness borne by the entire capitalist system as a whole. 
Only a philosophy which adopts the goal of adequately depicting the 
movement of material reality can serve science as a reliable beacon to 
preserve it from the deadly separation from practice, from the 'ever
green tree of life'. Only the principle of planning, whose introduction 
is incompatible with the principle of the private ownership of the 
means of production, with the dictatorship of the minority over the 
majority, can save science from withering in empty abstractions and, 
by unleashing the powers of scientific talent slumbering in the popu
lar masses, bring it to a new and unimagined bloom. 

Science in the Soviet Union, and mathematics as part ofit, is strong 
for this very reason that it possesses the dialectics of Hegel, materialis
tically overcome and freed from idealist distortions, and the principles 
of socialist planning, which for their part translate into reality the 
doctrines of dialectical materialism, as a gnideline, and new, 
numerically growing mass cadres of the proletarian student body, 
bringing forth new scientific powers out of themselves, as bearers. 
The carrying out of the Five Year Plan, the electrification of the Soviet 
Union, the construction of new railways, the setting up of giant 
metallurgical works, of coal mines, etc., the industrialisation of col
lective agriculture, the construction of socialist towns, the poly
technicisation of the schools and the liquidation of elementary and 
technical illiteracy, all this poses mathematics a great number of 
questions which will be successfully solved in a planned way, with the 
collaboration of all branches, in collective work and gnided by the sole 
scientific methodology of the materialist dialectic, and will be able to 
have a fruitful effect on the development of mathematical theory. 

Thus the philosophy of Hegel is materialised in both meanings of 
the word in the Soviet Union: as to its content, and as a mass act 
through the proletarian dictatorship.· As such, however, it is the 
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guarantee, that what is immortal even in Hegel's mathematical 
thoughts, from the private property of a privileged caste of academics, 
protected by a mystic veil, will become the common property of 
millions of toilers. 

:il 
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HEGEL, MARX AND THE CALCULUS 

by C. Smith 

I. Marx's Mathematical Work 

In the preface to the second edition of Anti-Diihring, Engels refer
red to the mathematical manuscripts that Marx had left, and said that 
they were extremely important. But they remained inaccessible for 
fifty years, only being published in Russian translation in 1933. In 
1968, they were first made available in their original form, in the 
Russian edition from which the present volume has been translated. 
To this day, very little attention has been paid to them.* 

But despite this, Engels's assessment was right. Marx spent a great 
part of the last few years of his life on this work which must be seen, 
not as a curiosity of mathematical history, but as a significant con· 
tribution to the development of dialectical materialism. 

Marx was not a mathematician. In the course of his work on 
Capital, he continually strove to overcome his lack of knowledge in 
this field, so that he conld apply algebraic methods to quantitative 
aspects of political economy. But, from 1863, his interest turned 
increasingly to the study of infinitesimal calcnlus, not just as a 
mathematical technique, but in relation to its philosophical basis. By 
1881, he had prepared some material on this question, and this forms 
the greater part.of this volume. It is clear that these manuscripts were 
not intended for publication, being aimed at the clarification of Engels 
and himself. Not only is the fust manuscript marked 'For the General' 
and the second 'Fill Fred', but they are written in that mixture of 
German, English and French in which the two men usually com
municated. 

Much ink has been spilled in recent years to try to show that Marx 
did not agree with Engels's work on the natural sciences. These efforts 

* See D.J. Stroik, 'MarxandM8thematics' ,ScienceandSociety, 1948,pp.181-196. V. 
Glivenko, Der Differentialbegriff bei Marx untl"Hadamard', Unter dem Banner des Mar-
:cismus, 1935, pp.l02-110. ' 
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are part of the hostility to the idea of the dialectics of nature and the 
general attack on dialectical materialism as a whole. They never. had 
any basis in the published writings of Marx, or in his correspondence 
with Engels. These manuscripts show, apart from anything else, that 
Engels's work was part of a joint project on the part of the two 
founders of materialist dialectics. 

When we read the lerter in which Engels gave his reaction to them, 
we get a clue to their real significance.* Engels comments: 'Old Hegel 
guessed quite correctly when he said that differentiation had for its 
basic condition that the variables must be raised to different powers, 
and at least one of them to at least the second . . • power.' Leaving 
aside for the moment the mathematical meaning of this remark, it 
directs our attention to the connection of Marx's work with its point of 
origin: Hegel's Science of Logic, especially the section on Quantitative 
Infinity (Miller translation, pp.238-313). Engels knows that this is 
what. Marx is referring to, without Hegel's name being mentioned. 

It is surprising that the editors of the manuscripts, who have been 
so painstaking in following up all Marx's mathematical references, 
shonld have ignored this quite unmistakable connection. While the 
conclusions of Hegel and Marx reflect the conflict between idealism 
and materialism, of course, they discuss the same issues and refer to 
many of the same authors. tIt is worth noting that, while Hegel often 
stresses his opinion that mathematical forms are quite inadequate for 
the expression of philosophical ideas, he nonetheless spends about 
one-eighth of the Science of Logic on the question of mathematics, 
most of this in relation to calcnlus. Marx, on the other hand, never 
echoes Hegel's deprecatory attitude to mathematics. 

2. The Crisis of Infinity 

In the course of 2,500 years, mathematics has undergone a number 
of profound crises, all of which may be traced to the question of the 
infinite. Greek mathematics ran into this trouble in the 5th century 
BC, from two directions. The first was when Zeno produced his 
famous paradoxes.§ Apparently his aim was to justify the contention 

* Engels to Marx, Aulust 10, 1881. See page xxvii-xxx for a translation of this letter 
and two other items from the- Marx-Engels com:spondence. 

t Perhaps Marx's refen:uces to Newton"s Principia were prompted by those of Hegel. 
His references to John Landen cenaiDly were. 

§ See Lenin, Colla:ted Worlu, Vol.38, pp.256-260. 
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of his master Parmenides, that Being is one and unchanging, by 
showing that multiplicity and motion led to contradiction, and were 
therefore mere appearance. 

All four of Zeno's patadoxes - 'Achilles and the Tortoise', 'The 
Arrow', 'The Dichotomy' and 'The Stadium' -turn on the problems 
of the infinitely small magnitude and the infinitely large number. 
They demonstrate that movement is contradiction, as is the indefinite 
divisibility of space and time. 

Soon after they were launched on the acadentic world, it was shaken 
by a second bombshell. The followers of Pythagoras believed that 
number- and that meant the set of integers I, 2, 3 ... -was the 
fundamental basis of all Being. But the geometrical theorem named 
after their leader showed that the lengths of certain lines, for example 
the diagonal of a square exactly one unit in size, could not be measured 
in terms of integers. Today we would say that ~ 2 is not a rational 
number. They tried to keep this scandal a secret, but the terrible news 
got out. 

It is easy to see that this trouble also springs from the infinite, if you · 
try to write down as a decintal the number whose square is exactly 2. 
Greek mathematics evaded the question of infinity from then on, by 
restricting its attention to the relations between lines, areas and 
volumes, without ever attempting to reach a general conception of 
lltmlber. 

It was partly in response to these problems of infinite divisibility 
that the Ionian philosophers-Europe's first physicists- developed 
their conception of the atoms, indivisible pieces of matter constantly 
moving in the void. This concept, revived afrer 2,000 years, becaine 
the foundation for the mechaoistic science of Galileo and Newton. As 
we shall see, this attempt to avoid the contradictions of the infinitely 
divisible continuum could achieve its great successes only within 
definite limits. 

Mathematics from the time of the Renaissance increasingly found 
itself facing the question of movement, and this confrontation led in 
the seventeen.th century to the emergence of the algebraic geometry of 
Descartes and of the calculus.* Movement meant that the moving 
object had to pass through 'every point' of a continuous interval. 

---* Boyer, The Hisrury of Calculus, is still the best account. Baron, TIN Origins of the 
Caladus, is more detailed on the period before NCwton and Leibnitz. For a useful brief 
account, see. StrUik, A Coru:iu History of MIJIIaem;njcs. ' 
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Science would not escape the problem of sub-dividing the interval 
'indefinitely' into 'infinitely small' pieces. Up to the time Hegel was 
writing (1813), mathematicians freely operated with such objects, 
adding them up as if they were ordinaty numbers. Sometimes they 
obtained results which were correct and useful, and sometimes they 
obtained nonsense in algebra. 

Newton had to express in mathematical form the concept of instan
taneous velocity. If an object is moving with uniform speed, this is 
easy: simply divide the distance travelled by the time it took to cover 
it. But what can be said about an object which is speeding up or 
slowing down? We must find the average speed over some time 
interval, and then consider smaller and smaller intervals. But to 
obtain the velocity 'at an instant' would entail dividing 'an infinitely . 
small distance' by an 'infinitely small' time. It would be the 'ratio of 
vaoishing magnitudes'. 

Earlier writers, notably Galileo's pupil Cavalieri, had written of 
'indivisibles', objects without length, which, when taken in infinite 
number, somehow made up a finite length. Newton refused to take 
this way out. The numerator and denominator of this ratio had to be 
'vanishing divisibles'. The distance travelled, say x, . he called a 
'fluent', while its rate of change or instantaneous velocity he called its 
'tlwrion',denoted i. A 'moment' of timet he denoted 'o' -notto be 
confused with 0 - so that the distance travelled during this moment 
was io. The i was the 'ultimate ratio' between them which, he said, 
had to be understood 'not as the ratio before they vanish or after
wards, but with which they vaoish'. Only then could their powers
squares, cubes, etc. -be taken as zero, or 'neglected'. Both Newton 
and Leibnitz who originated the differential calculus independently at 
the same period, struggled to explain what this meant. Leibnitz 
invented the now standard notation 'dx', 'dt' for his 'differentials', 

whose ratio was the 'differential quotient'~ .No wonder that Bishop 

Berkeley made the most of this obscurity - Marx was to call it 
'mysticism'- to ridicule the Newtonians. He called their 'vanishing 
quantities' 'the ghosts of departed quantities' and asked how anyone 
who accepted such things could object to the mysteries of religion.* 

* The full title of Berkeley's 1734 polemic, directed against Newton's follower Halley, 
is The Ana.{ysts or tz Discourse AddTeued to an lnfithl Matherruuirian. Wherein it is 
.,..,.;,...t whnlter tiM object principh$ and iaf..-.-s of modmJ analysis au """"distinctly 

./ 
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Of course, as an Englishman, Newton could get round the prob
lem: 'everyone knew' that things moved and possessed a velocity at 
each instant of time. The contradictions of motion could be ignored. 
This has been described as 'empirical dogmatism', in contrast with 
the 'metaphysical dogmatism' of Leibnitz. 

Throughout the eighteenth century the difficulty remained. 
Mathematics developed in leaps and bounds, but the careful and 
rigorous argnmentation of the Greeks was thrown to the winds. The 
phrase of d' A!embert summed up the attitude of the time: alkz en 
avant et /afoi vous viendra (go ahead and faith will come). As great a 
mathematician as Euler can find himself trying to base the calculus on 
the multiplication and division of zeroes of different orders.* 

3. Hegel and the Infinite 

This is still the situation when Hegel takes up the issue. He con
demns Leibnitz in patticular for folinding the calculus in a manner 
which was as 'non-mathematical as it is non-philosophical' (op.cit., 
p.793). tHis aim in discussing the subject is, he says, 'to demonstrate 
that the infinitely small ... does not have merely the negative, empty 
meaning of a non-finite, non-given magnitude . . . but on the con
trary has the specific meaning of the qualitative nature of what is 
quantitative, of a moment of a ratio as such'. (op.cit., p.267) To see the 
significance of this, we must examine the part played by the ideas of 
'finite' and 'infinite' in Hegel's work, as against the meaning given to 
them by Kant in particular. 

For Kant, as for all bourgeois philosophy before Hegel, thought is 
the activity of individual human beings, limited in their knowledge 
and power of understanding by their own personal experience. These 
'fmite beings' cannot know things as they are 'in themselves', or the 
interconnections between separate things. We come into contact with 
unlimitedness, freedom, infinity, only when we obey the moral law; 
and even this refers only to intention, not to the actual consequences of 

conceived or more evidently deduced than religious mysteries and points of faith. 'First Cast 
the Beam Out of Thine Own Eye; and Then Shall Thou See Cleorly to Cast the Mote Out of 
Thy Brothers Eye'. 

* E.T. Bell, in The Development of Mathenuztics, p.284, refers to 'The Golden Age of 
Nothing'. See Appendix III for a discussion of. Euler's work. 

t See also Lenin, op.cit., p.209. 
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the actions of finite beings. The infinite is and must always remain 
unattainable, never actua/ised. 

Hegel spent his entire life fighting against this conception and 
exposing its implications, and this with a passion with which he is 
rarely credited. For him, the finite things we find in the world are 
united with the infinite, and the limited consciousness of individual 
people are elements of infinite Mind or Spirit. He condemned those 
subjective ways of thought which saw the world as just a collection of 
finite things, cut off from each other and from their totality. 

Such an outlook could only look upon the infinite as the 'non' 
finite', beyond our reach. This 'bad' or 'spurious' infinite was 'what 
ought to be and is not', just the wearisome repetition of one finite 
thing after another, followed by an empty 'and so on'. Instead of 
all-sided necessity, subjectivism only sees the endless chain of cause 
and effect, and in place of the unlimited development of the human 
Spirit it knows only the separate experiences of isolated human 
atoms (op.cit., pp.l09-156). * 

Spinoza had denied the scholastic 'infinitum actu non datur'- 'there 
is no actual infinity'. He saw that to determine something, to set a 
boundary around it, was to negate everything else, and so to point 
beyond the boundary. Hegel applauded this but went a huge step 
further. The unity of the fmite and the infinite was not something 
fixed, 'inen', but contained 'the negative unity of the self, i.e. sub
jectivity'. What Hegel calls 'Being-for-self is the negation of the 
infinite back into the finite, thus the negation of negation, making the 
finite a part of the 'mutual determinant connection of the whole'. 
Hegel saw this as the basis of idealism, 'the fundamental notion of 
philosophy'. The isolated fmite thing 'has no veritable being'; the 
negative element which lies at its heart is 'the source of all movement 
and self-movement'. t 

Hegel develops this conception of the fmite and the infinite in the 
course of his examination of Quality, 'the character or mode' of Being. 
He tries to show how 'Being-for-self suppresses itself. The qualitative 
character, which is the One or unit has reached the extreme point of its 
characterisation, has thus passed over into determinateness (quality) 
suppressed, i.e. into Being as Quantity.' In analysing Quantity, mag-

* Also Phenomenology of Spirit, Miller translation, pp.l43-145; Encyclopaedia, Sec
tions 93-95. 

t Encyclopaedia, end of Sections 95. Also Lenin, op.cit., pp.108-119 
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nitude (determinate quantity) and quantum (how much), he is con
cerned with 'an indifferent or external character or mode, of such a 
kind that a thing remains what it is, though its quantity is altered, and 
the thing becomes greater or less'. (Jincyclopaedia, sections 104-1 05) 

Common sense, of course, is happy to take the idea of number for 
granted. Hegel shows that it contains contradiction within it. 'Every
body knows' that quantum can be altered. But, says Hegel, 'not only 
can it transcend every quantitative determinateness, not only can it be 
altered, but it is posited that it must alter . . . Thus quantum impels 
itself beyond itself ... The limit which again arises in this beyond is, 
therefore, one which simply sublates itself again and beyond to a 
further limit, and so on 10 infinity'. (Science of Logic, p.225) 

In the 'bad infinity' of the alternation of a particul3r quality and its 
negation, we at least have the interest of the difference between its two 
terms. But in the endless sequence of quanta, each term is identical 
with its successor, determinateness having been suppressed. This 
Quantitative Infinite Progression moves towards infinity, but never 
gets any closer to it, says Hegel, 'for the difference between quantum 
and its infinity is essentially not a quantitative difference'. It is in this 
connection that Hegel discusses the calculus. 

Hegel is deeply dissatisfied with the vagueness of the 
mathematicians about differentiation. Are the differentials dy, dx 
finite quantities, which can be divided into each other? Or are they 
zero? In that case their ratio would have no meaning - or any 
meaningyouliketogiveit. But dy or dx are not 'quanta': 'apart from 
their relation they are pure nullities'. The mathematicians had tried to 
treat them as in 'an intermediate state . . . between being and 
nothing', but this cannot exist. For 'the unity of being and nothing 
. . . is not a sUite. . . . on the contrary, this mean and unity, the 
vanishing or equally the becoming is alone their lruth'. (Science of 

Logic, pp.253-254) 

4. Marx and Engels on the Infinite 

So Hegel's detailed examination of the calculus is not at all a 
digression, but an investigation of the way science and philosophy had 
dealt with questions which lay at the very basis of his outlook. Marx 
and Engels, as materialists, did notaccept Hegel's idealism, of course. 
But in their negation of Hegel's system,. they based themselves on this 
same view of the relation between the finite and the infinite, with its 

ADDmONAL MATERIAL 263 

profoundly revolutionary implications. Where Hegel saw 'Spirit' as 
the 'infinite Idea', Marx grasped the inf"mite experience of humanity 
as the highest form of the infinite movement of matter. The develop
ment ofhuman powers of production meant the continual penetration 
of this movement in all its continually-changing forms and inter
connections. 

The knowledge of each individual man or woman is limited, as is 
the knowledge of the entire race at any particular time. But in the 
struggle against nature, each finite person expresses in himself the 
unlimited potential of mankind to master nature, and through this the 
all-sided movement of matter of which he is a part. 

That is why the positivist and the empiricist, who know only their 
own 'experience', face the for them insoluble 'problem of induction'. _ 
Since they can never live long enough to 'experience' the inf"mite -
count it, or measure it, or classify it- they must deny its actuality. 
Consequently, they can never grasp the essential universality of a law, 
and are walled off from universal movement and all-sided inter
connection. 

Engels put the matter very clearly. He accepts the statement of the 
botanist Nageli that 'we can know only the finite', 

'in so far as only finite objects enter the sphere of our knowledge. 
But the proposition needs to be supplemented by this: "fun
damentally we can know only the infinite". In fact all real, exhaus
tive knowledge consists solely in raising the individual thing in 
thought from individuality into particularity and from this into 
universality, in seeking and establishing the infinite in the finite, 
the eternal in the transitory. The form of universality, however, is 
the form of self-completeness, hence of infinity; it is the com
prehension of the many finites in the infinite . . . 
' All true knowled~e of nature is knowledge of the eternal, the 
infinite, and hence essentially absolute. But this absolute know
ledge has an important drawback. Just as the inf"mity of knowable 
matter is composed of the purely futite things, so the inf"utity of 
thought which knows the absolute is composed of an infinite 
number of fmite human minds, working side by side and suc
cessively at this infinite knowledge, comutitting practical and 
theoretical blunders, setting out from erroneous, oae-sided and 
false premises, pursuing false, tortuous and uncertain paths, and 
often not even finding what is right when they run their noses 



264 MATHEMATICAL MANUSCRIPTS 

against it (Priestley). The cognition of the infinite is therefore beset 
with double difficulty, and from its very natute can only take place 
in an infinite asymptotic progress.' (Dialectia of Nature, pp.237-
238) 

'It is just beamse infinity is a contradiction that it is an infinite 
process, unrolling endlessly in time and in space. The removal of 
this contradiction would be the end of infinity. Hegel saw this quite 
correctly, and for that reason treated with well-merited contempt 
the gentlemen who subtilised over this contradiction.' (AIIIi
Diihring, pp.75-76) 

5. Marx and the Cakulus 

In his mathematical work, Marx echoes Hegel's scorn for the vain 
efforts of the mathematicians to evade the contradictions inherent in 
motion, continuity and the infinity. But their attitudes to 
mathematics were quite opposed. For the objective idealist Hegel, 
mathematics, like natural science, occupied very lowly stsges in the 
uofolding of the Idea. Mathematics, he thought, ought to be 'stripped 
of its fine feathers'. 'The principle of magnillule, of difference not 
determined by the Notion, and the principle of equality, of abstract 
lifeless unity, cannot cope with that sheer unrest of life and its 
absolute distinction • . • Mathematical cognition . • . as an external 
activity, reduces what is self-moving to mere material, so as to possess 
in it an indifferent, external, lifeless content.'* 

But Marx sees that mathematical abstractions, purely formal as 
they must necessarily appear, contain knowledge of self-moving mat
ter, knowledge of generalised relationships between material objects 
which is ultimately abstracted from social practice, and which is 
indispensable for practice. 

Hegel and Marx are e&!'h concerned to express the contradiction of 
movement and change, as Hegel says, to 'reslly solve the con
tradiction revealed by the method instead of excusing it or covering it 
up'. (Science of Logic, p.277) 

Where Hegel only needs to expose the false methods of thought 
which underly these ambiguities, Marx feels impelled to go deeper 
into the mathematical techniques themselves and provide an alter-

* P1renomelw1DtiY, p.Tl See pp.24-26. AlsoEn<ydopoedia Sections 259, 267 ()'lriknoplry 
of Natore). • 
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native. He wants to be able to develop the derivative 1i, not as an 

approximation, but as an expression of the actual motion of the func
tion .f(x). 

Unlike Hegel, Marx refers to the work of d' Alembert on this 
question (see Appendix IV, p. 165). He had not resolved the problem, 
but had drawn attention to the weakness of existing mathematical 
methods: its lack of a clear conception of limit. Marx attempts to 
answer this by the following means, which we summarise in modero 
notation. 

If we want to differentiate a function .f(x), proceed as follows: take 
x1 different from x and subtract the expression for .f(x) from that for 
.f(xJ. Let us call this F(x, xJ = .f(xJ- .f(x), a function ofzwo 
variables x and x 1• Now express F(x,xJ, "if possible, as. 
(x1- x)G(x,xJ. Finally, in the function G, set x 1 = x, and call 
G(x,x) = f(x), the derivative function. In this way, we avoid all 
trouble with 'infinitely small quantities'. Those puzzling differentials 
now have meaning only in the relationship d.f(x) = f(x)d:r. (Marx 
assumes without good reason that G will always be continuous at x 1 

= x). 
Illustrating this with a simple example, take .f(x) = x3 , 

xi- x3 = (x1 - x) (xf+ x.x+ x1) , 

so G(x,x;) = xf+ x.x+ x1 , 

leading to f(x) = G(x,x) = 3:1:1 • 

We should miss the whole point of this, however, if we did not heed 
Marx's remark at the start of the first manuscript: 'First making the 
differentiation and then removing it therefore leads literally to 
rwthing. The whole difficulty in understanding the differential oper
ation (as in the negation of the negation generally) lies in seeing 1ww it 
differs from such a simple procedure and therefore leads to real 
results.' Marx is referriog to the operations of first making x 1 dif
ferent from x, and then making it the same as x once more. For only 
through this double negation is the actualmowment of.f(x) registered 
in the derivative f(x). This is the idea expressed by Hegel (and 
referred to by Engels in his letter to Marx quoted above) when Hegel 
says that 'the calculus is concerned not with variable magnitudes as 
such but with the relations of powers • • • the quantum is genuinely 
completed into a qualitative reality; it is posited as actually infinite.' 
(Science of Logic, p.253) 



266 MATHEMATICAL MANUSCRIPTS 

Hegel's comments on calculus were made just at the point when 
mathematics was about to make a fresh effon to tackle these issues. 
(The Science of Logic was published in 1813). During the next 70 
years, the basic concepts of function, limit and number were com
pletely transformed. But these new ideas were not known to Marx. As 
this volume makes clear, his knowledge was drawn from textbooks 
which, although they were still in use in his time, did not reflect the 
newer developments.* · 

But this does not mean that the work of Marx and Hegel was 
rendered valueless as a result of these changes, for the funher expan
sion of mathematical knowledge to this day continually encounters 
the same problems, but at a deeper level. 

6. Later Deoelopments 

When mathematicians before 1830 spoke of afunclinn, what they 
had in mind was roughly what Euler had described in the words: 
'some curve described by freely leading the hand'. Lagrange took it 
for granted that such a 'smooth' object would have a 'Taylor expan
sion': a + bx + cx2 + dx3 • • • , and called it 'analytic'. (The method 
advocated by Marx will ouly work for such functions.) The more 
general modern conception of functional relationship was clarified by 
Dirichlet and others in the 1830s. It simply meant that to each of a 
given set of values of x corresponded a given value f(x). 

It was in 1821 and 1823 that Cauchy published his books which 
attempted to give a logical definition of limit. These ideas were tight
ened up byWeierstrassin the 1860s. Now, tosaythatafunctionf(x) 
tended to a limit as x tended to x 0 , meant the following: there exists a 
number L such that, for any positive quantity E, however small, 
there exists a quantity b, such that whenever 

x 0 - b<x<x 0 + b,L- E<f(x)<L+ E. 

Using this idea, it was possible to defme continuity, and understand 

the derivative f(x) as the limit of f(x + ~- f(x), as b tended to 0. t 

* To this day, students are introduced to calculus with the aid of arguments drawn 
essentially from the 18th century. The book by Lacroix, which Marx made so much use 
of, was still being reissued in 1881. 

t These ideas, as well as those of Cantor, were to some extend anticipated in 182G-40 
by the Bohemian priest Bolzano, although his wotk was not generally appreciated until 
later. . " 
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Could mathematicians now say that they had returned to the rigour 
of argumentation of their Greek predecessors, but at the same time 
grasped the nettle of infinity? Was the new form of analysis able to 
dispense with intuitive ideas of space and time? Not yet. 

For the idea of'limit' was still infected with intuition in the shape of 
the continuous collection of numbers contained in the interval bet
ween the two values. Weierstrass's definitions aimed to provide a 
static framework for what was essentially dynamic. Together with 
Dedekind and others, he grappled with the continuum of numbers, 
clarifying many of the concepts of modern analysis. Then, in 1872, 
Cantor's work appeared, which tried for the first time to deal 
rigorously with infinite sets of objects, to count the actoally infinite, 
and to provide a consistent arithmetic of 'transfinite numbers'.* 

In 1900, the leadinti figure in world mathematics, Henri Poincare, -
could confidently declare that 'absolute rigour has been attained'. As 
Bell repons him, Poincare was quite certain that 'all obscurity had at 
last been dispelled from the continuum of analysis by the nineteenth 
century philosophies of number based on the theory of infmite classes 
... All mathematics, he declared, had finally been referred to the 
natural numbers and the syllogisms of traditional logic; the 
PYthagorean dream had been realised. Henceforth, reassured by 
Poincare, timid mathematicians might proceed boldly, confident that 
the foundation under their feet was absolutely sound--:' (Bell, The 
Deoelopment of Mathematics, p.172. See also p.295.) 

How wrong he was! In the early years of this century, the geometry 
of Euclid, thought by Kant and nearly evecyone else to be founded on 
self-evident truths, was shown to be not the correct description of 
actual space; even worse, the foundations of logic itself began to 
shake. These problems of the foundation of mathematics and logic 
were directly linked to the paradoxes of infinite sets. 

Throughout this century, the search for an uncontroversial basis 
for mathematical science has produced the sharpest controversy. In 
the attempt to evade the paradoxes of the infinite, two opposite trends 
have been at war. On the one side stand the formalists, constantly 
trying to see mathematics as a game played with undefioed symbols, 
having no more meaning than chess. By setting out the rules of this 
game in the form of consistent axioms, all the relations between the 

* But while Cantor beHeved the infinitely large was actual he absolutely denied the 
existence of the actually iDfiDitely small. 
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invented objects of the game can be worked out. Then, in 1931, 
disaster struck, in the form of the theorem of Giidel: he showed that 
the game called arithmetic could produce well-formulated problems 
which were undecidable within the system. 

Against the formalists stood the intuitionists, led by Brouwer and 
Heyting, tracing their origins back to Kant. For them, mathematics 
had at its basis certain unanalysable concepts which were given a 
priori. Infinity was not among them, and mathematics had to be 
reconstructed after expunging reference to such monsters. 

7. What is mathematical knowledge? 

These controversies appear to be of interest only to those engaged in 
the mathematical game. In fact, however, the crisis which still wracks 
the foundations of physics turns precisely on the contradictions of the 
discrete and the continuous, the fmite and the infinite. Some phy
sicists have been led to consider the possibility of a 'fmitistic 
mathematics' as a way out of their troubles.* 

Marx's work on calculus did not only concern the problems of 
infmitesimals. Having explained his 'algebraic method' of dif
ferentiating, he takes a further step which brings him very close to the 
spirit of twentieth century mathematics. He describes the further 
development of calculus in terms of a reversal.ofroles, in which the 
symbols for the differential coefficient are transformed into 
'oJ?erational formulae' (Operationsfonnel), satisfying 'operational 
equations'. These ideas give a basis for a materialist conception of 
mathematical knowledge which is of great importance for ilia!ectical 
materialism as a whole. For mechanical materialism, formal abs
tractions carry great dangers. They are taken in isolation from the 
movement from living perception to social practice, and the entire 
process is seen in reverse, rather like the negative of a photograph. For 
the abstract symbol is mistaken for the actual object of knowledge, 
while the concrete object is seen only as mere background. 

Modern mathematics has generalised the processes of algebra into 
stratospheric levels of abstraction, where the objects of the science 
seem to be completely undefined. All that we know about them is the 
rnles which govern their relationships to each other, and these seem to 
be decided by the will of the mathematician. Empiricists are then 

* See Weizsicker, The World View of Physics, Chapter 5. Also his contributions to T. 
Bastin (ed) Quamum TJr.qry and Beyond. 
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puzzled by the apparent coincidence which makes precisely these 
abstract forms express the relationshiJ?S of material processes. Marx's 
approach to the calculus, however, shows the dialectical relationship 
between the abstract symbols and the movement of matter from 
which they have been abstracted. 

In discussing the nature of abstraction, Hegel attacks those views 
which place the abstract on a lower level than 'sensuous, spatial and 
temporal, palpable reality'. 'In this view, to abstract means to select 
from the concrete object for our subjective purposes this or that mark'. 
(Science of Logic, p.587, Lenin op.cit., pp.l70-171). 

Hegel - from his idealist standpoint, of course - thinks on the 
contrary that 'abstract thinking. . . is not to be regarded as a mere 
setting aside of the sensuous material, the reality of which is not 
thereby impaired; rather it is the sublating and reduction of that· 
material as mere phenomenal appearance to the essential.' (Science of 
Logic, p.588) Hegel .cannot allow these considerations to apply to 
mathematics, which he regards as being unable to capture the richness 
of movement and interconnection. Marxism, turning the dialectic on 
to its material feet, grasps the way that mathematical abstractions, 
seen in the context of the entire development of natur.U science and 
technology, can contain real knowledge of the movement of matter. 
This is the meaning of Engels's description of mathematics as 'an 
abstract science which is concerned with creations of thought, even 
though they are reflections of reality'. (Dialectics of Nature, p.218) · 

To the modern student of mathematics, these manuscripts of Marx 
have, no doubt, an archaic appearance. But we have seen that the 
questions with which they really deal are infmity, the relation between 
thinking and being, and movement, the central philosophical issues. 
As our brieflook at the history of mathematics has shown, it is just 
these questions which underlie the crisis which still wracks the foun
dations of mathematics. These difficulties are linked with the 
methodological problems facing many other branches of science, 
problems which deepen with every major scientific advance; 

A century ago, Marx and Engels paid particular attention to the 
development of natural science and mathematics, precisely because 
they knew that dialectical materialism could only live and grow if it 
based itself on the most up-to-date discoveries of science and con
cerned itself with the problems which these entailed for fixed, 'com
mon sense' views of reality. Today, this is still more vital than when 
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Engels was preparing his articles against DUhring and his notes on the 
dialectics of nature, and when Marx was writing these mathematical 
manuscripts. 

When we look at this work as a whole, another common feature is 
striking: the way Marx and Engels return to Hegel for clarification. 
Marxism is the negation of absolute idealism but in the Hegelian 
sense of simultaneous abolition and preservation. Contrary to the 
contention of various revisionist schools, Marx did not make a single, 
once-for-all break with Hegel, but continuously returned to Hegel to 
negate his idealism, as did Lenin and Trotsky after him. 

These manuscripts, therefore, may be seen as the last of Marx's 
returns to Hegel. They should be a spur to the Marxists of today to 
take forward the fight for the dialectical materialist method in con
nection with the latest developments in mathematics and natural 
science through a still deeper struggle with Hegel. 
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